Advertisement

Foundations of Physics

, Volume 11, Issue 3–4, pp 279–296 | Cite as

On a more precise statement of Hamilton's principle

  • Cecil D. Bailey
Article

Abstract

It has been recognized in the literature of the calculus of variations that the classical statement of the principle of least action (Hamilton's principle for conservative systems) is not strictly correct. Recently, mathematical proofs have been offered for what is claimed to be a more precise statement of Hamilton's principle for conservative systems. According to a widely publicized version of this more precise statement, the action integral for conservative systems is a minimum for discrete systems for small time intervals only and is never minimum for continuous systems. In this paper, two contradictions to this “more precise” statement are demonstrated, one for a discrete system and one for a continuous system.

Keywords

Small Time Precise Statement Classical Statement Discrete System Small Time Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Yourgrau and S. Mandelstam,Variational Principles in Dynamics and Quantum Theory, 3rd ed. (Pitman & Sons, 1968), pp. 16, 175, 177.Google Scholar
  2. 2.
    W. F. Osgood,Mechanics (MacMillan, 1937), p. 356.Google Scholar
  3. 3.
    M. R. Hestenes,Modern Mathematics for the Engineer (McGraw-Hill, 1956), p. 75.Google Scholar
  4. 4.
    I. M. Gelfand and S. V. Fomin,Calculus of Variations (Prentice Hall, 1963), p. 159.Google Scholar
  5. 5.
    D. R. Smith,Variational Methods in Optimization (Prentice Hall, 1974), p. 195.Google Scholar
  6. 6.
    D. R. Smith and C. V. Smith, Jr.,AIAA J. 12, 1573 (1974).Google Scholar
  7. 7.
    C. D. Bailey,ACTA Mechanica 36, 63 (1980).Google Scholar
  8. 8.
    C. D. Bailey,J. Sound Vibration 44, 15 (1976).Google Scholar
  9. 9.
    C. D. Bailey,Computer Methods in Applied Mechanics and Engineering 7, 235 (1976).Google Scholar
  10. 10.
    C. D. Bailey,Found. Phys. 5, 433 (1975).Google Scholar
  11. 11.
    C. D. Bailey,ASME J. Applied Mechanics 43, 684 (1976).Google Scholar
  12. 12.
    C. D. Bailey and J. L. Haines,Computer Methods in Applied Mechanics and Engineering, to appear.Google Scholar
  13. 13.
    D. H. Hodges,AIAA J. 17, 924 (1979).Google Scholar
  14. 14.
    D. H. Hodges,American Helicopter Society J. 24, 43 (1979).Google Scholar
  15. 15.
    D. L. Hitzl and D. A. Levinson,Celestial Mechanics,22, 255 (1980).Google Scholar
  16. 16.
    D. L. Hitzl,J. Computational Phys.,38, 185 (1980).Google Scholar
  17. 17.
    M. Baruch and R. Riff, Technion Israel Institute of Technology, TAE 403 (1980).Google Scholar
  18. 18.
    T. E. Simkins,AIAA J. 16, 559 (1978).Google Scholar
  19. 19.
    W. R. Hamilton,Phil. Trans. R. Soc. Lond. 124, 247 (1834).Google Scholar
  20. 20.
    H. Goldstein,Classical Mechanics (Addison-Wesley, 1950).Google Scholar
  21. 21.
    E. T. Whittaker,Analytical Dynamics (Cambridge University Press, 1st ed., 1904; 4th ed., 1937), p. 245.Google Scholar
  22. 22.
    A. G. Webster,The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies (G. E. Stechert & Co., 1st ed., 1904; 3rd ed., 1942), p. 97.Google Scholar
  23. 23.
    C. D. Bailey,AIAA J. 17, 541 (1979).Google Scholar
  24. 24.
    C. V. Smith, Jr.,ASME J. Applied Mechanics 44, 796 (1977).Google Scholar
  25. 25.
    C. D. Bailey,ASME J. Applied Mechanics 44, 796 (1977).Google Scholar
  26. 26.
    C. D. Bailey,J. Sound Vibration 54, 454 (1977).Google Scholar
  27. 27.
    C. D. Bailey,AIAA J. 18, 347 (1980).Google Scholar
  28. 28.
    R. D. Witchey, The Ohio State University, Thesis (1980).Google Scholar
  29. 29.
    X. Culverwell,Proc. London Math. Soc. XXIII, 241 (1892) [cited in Ref. 21].Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Cecil D. Bailey
    • 1
  1. 1.The Ohio State UniversityColumbus

Personalised recommendations