Foundations of Physics

, Volume 11, Issue 3–4, pp 179–203 | Cite as

On a quantum algebraic approach to a generalized phase space

  • D. Bohm
  • B. J. Hiley


We approach the relationship between classical and quantum theories in a new way, which allows both to be expressed in the same mathematical language, in terms of a matrix algebra in a phase space. This makes clear not only the similarities of the two theories, but also certain essential differences, and lays a foundation for understanding their relationship. We use the Wigner-Moyal transformation as a change of representation in phase space, and we avoid the problem of “negative probabilities” by regarding the solutions of our equations as constants of the motion, rather than as statistical weight factors. We show a close relationship of our work to that of Prigogine and his group. We bring in a new nonnegative probability function, and we propose extensions of the theory to cover thermodynamic processes involving entropy changes, as well as the usual reversible processes.


Entropy Phase Space Quantum Theory Weight Factor Probability Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Wigner,Phys. Rev. 40, 749 (1932).Google Scholar
  2. 2.
    J. E. Moyal,Proc. Camb. Phil. Soc. 45, 99 (1959).Google Scholar
  3. 3.
    H. Fröhlich,Riv. Nuovo Cimento 3, 490 (1973).Google Scholar
  4. 4.
    B. Misra, I. Prigogine, and M. Courbage,Proc. Nat. Acad. Sci. USA 76, 4768 (1979).Google Scholar
  5. 5.
    M. Schönberg,Riv. Nuovo Cimento IX, 1139 (1952).Google Scholar
  6. 6.
    F. A. M. Frescura and B. J. Hiley,Found. Phys. 10, 7 (1980).Google Scholar
  7. 7.
    J. von Neumann,Math. Ann. 104, 570 (1931).Google Scholar
  8. 8.
    T. Takabaysi,Prog. Theor. Phys. 11, 341 (1954).Google Scholar
  9. 9.
    D. Bohm, inThe Many Body Problem, C. DeWitt, ed. (Wiley, NY, 1959).Google Scholar
  10. 10.
    D. Bohm and G. Carmi,Phys. Rev. 133 A, 319 and 332 (1964).Google Scholar
  11. 11.
    T. Bastin, H. P. Noyes, J. Amson, and C. W. Kilmister,Int. J. Theor. Phys. 18, 445 (1979).Google Scholar
  12. 12.
    Y. Aharanov, M. Pendleton, and A. Peterson,Int. J. Theor. Phys. 2, 123 (1969).Google Scholar
  13. 13.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton, 1955).Google Scholar
  14. 14.
    E. Wigner, inPerspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (MIT, Cambridge Mass., 1971).Google Scholar
  15. 15.
    L. Cohen, inContemporary Research in the Foundations and Philosophy of Quantum Theory, Hooker, ed. (Reidel, Dordrecht, Holland, 1973), p. 66.Google Scholar
  16. 16.
    E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).Google Scholar
  17. 17.
    C. George, I. Prigogine, and L. Rosenfeld,K. Dan. Vidensk. Selsk. Mat.-fys. Meddel. 38, 1 (1972); C. George, F. Henin, F. Mayne, and I. Prigogine,Hadronic J. 1, 520 (1978); B. Misra,Proc. Nat. Acad. Sci. USA 75, 1627 (1978); B. Misra, I. Prigogine, and M. Courbage,Physica 98A, 1 (1979); C. George and I. Prigogine,Physica A99, 369 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • D. Bohm
    • 1
  • B. J. Hiley
    • 1
  1. 1.Department of Physics, Birkbeck CollegeUniversity of LondonLondonEngland

Personalised recommendations