Advertisement

Foundations of Physics

, Volume 8, Issue 9–10, pp 653–666 | Cite as

Self-consistent selection of a superconducting representation for the BCS model

  • Alvin K. Benson
Article

Abstract

Taking the BCS Hamiltonian written in second-quantized form, a modified form of Umezawa's self-consistent field theory method is applied, and a unitarily nonequivalent representation is selected in which the Hamiltonian obviously describes a superconducting system. This result is not at all obvious, since the original Hamiltonian is completely symmetric, and there is no reason a priori for expecting it to describe an asymmetric superconducting configuration. All higher order terms are accounted for, and in doing so, one finds the existence of the energy-gap condition for Cooper pairs. The representation is picked out without using the adiabatic theorem or pair approximation, as is typically done in the self-consistent method for superconductivity.

Keywords

Field Theory Order Term Modify Form High Order Term Theory Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Von Neumann,Ann. Math. 104, 570 (1931).Google Scholar
  2. 2.
    L. Van Hove,Physica (Utr.) 18, 145 (1952).Google Scholar
  3. 3.
    K. O. Friedrichs,Mathematical Aspects of the Quantum Theory of Fields (Interscience, New York, 1953).Google Scholar
  4. 4.
    S. S. Schweber and A. S. Wightman,Phys. Rev. 98, 812 (1955).Google Scholar
  5. 5.
    R. Haag,K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 29, 12 (1955).Google Scholar
  6. 6.
    L. Gärding and A. S. Wightman,Proc. Nat. Acad. Sci. USA 40, 617 (1956);Proc. Nat. Acad. Sci. USA 40, 622 (1956).Google Scholar
  7. 7.
    R. Haag,Nuovo Cimento 25, 287 (1962).Google Scholar
  8. 8.
    Y. Takahashi and H. Umezawa,Physica 30, 49 (1964).Google Scholar
  9. 9.
    S. Kamefuchi, Y. Takahashi, and H. Umezawa,Ann. Phys. 26, 336 (1964).Google Scholar
  10. 10.
    L. Leplae and H. Umezawa,Nuovo Cimento 33, 372 (1964).Google Scholar
  11. 11.
    L. Leplae and H. Umezawa,J. Math. Phys. 10, 2038 (1969).Google Scholar
  12. 12.
    L. Leplae, F. Mancini, and H. Umezawa,Physics Reports 10C, (1974).Google Scholar
  13. 13.
    A. Benson and D. M. Hatch,Int. J. Theor. Phys. 12, 321 (1975).Google Scholar
  14. 14.
    E. Ezawa, K. Kikkawa, and H. Umezawa,Nuovo Cimento 23, 751 (1962).Google Scholar
  15. 15.
    S. Kamefuchi and H. Umezawa,Nuovo Cimento 31, 429 (1964).Google Scholar
  16. 16.
    H. Umezawa,Acta Phys. Hung. 19, 9 (1965).Google Scholar
  17. 17.
    L. Leplae, F. Mancini, and H. Umezawa,Physics Reports 10C, (1974).Google Scholar
  18. 18.
    L. Leplae, R. Sen, and H. Umezawa,Prog. Theor. Phys. Supp., 637 (1965).Google Scholar
  19. 19.
    L. Leplae and H. Umezawa,Nuovo Cimento 33, 379 (1964).Google Scholar
  20. 20.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  21. 21.
    L. Leplae, R. Sen, and H. Umezawa,Nuovo Cimento 49, 1 (1967).Google Scholar
  22. 22.
    A. Benson,Int. J. Theor. Phys., to be published;Found. Phys. to be published.Google Scholar
  23. 23.
    J. M. Ziman,Principles of the Theory of Solids (Cambridge, London, 1965).Google Scholar
  24. 24.
    N. M. Hugenholtz,Many-Body Problems (Benjamin, New York, 1969).Google Scholar
  25. 25.
    P. Roman,Advanced Quantum Theory (Addison-Wesley, Reading, 1965).Google Scholar
  26. 26.
    H. Umezawa,Acta Phys. Hung. 19, 13 (1965).Google Scholar
  27. 27.
    Y. Takahashi and H. Umezawa,Physica 30, 49 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Alvin K. Benson
    • 1
  1. 1.Department of PhysicsIndiana University SoutheastNew Albany

Personalised recommendations