Skip to main content
Log in

Microscopic mechanism for the macroscopic asymmetry of superconductivity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Some of the physical implications involved in self-consistently selecting a superconducting (nonequivalent) representation for the BCS Hamiltonian are developed and discussed. This is done by comparing the phase symmetry of our system in original variables with that same symmetry when written in terms of physical variables. It is shown explicitly that Goldstone's theorem is satisfied and that dynamical rearrangement of symmetry has taken place in going from original to physical variables. Thus, it is found that the original phase symmetry transformation is taken up by physical “massless” fields and that the Bose-Einstein condensations of these fields in the physical (superconducting) ground state produce the asymmetry by “printing” the quantum electron numbern on that state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Benson,Found. Phys. 8, 653 (1978).

    Google Scholar 

  2. J. A. Cronin,Am. J. Phys. 33, 319 (1965).

    Google Scholar 

  3. J. Goldstone,Nuovo Cimento 19, 154 (1961).

    Google Scholar 

  4. G. Jona-Lasinio and Y. Nambu,Phys. Rev. 122, 345 (1961).

    Google Scholar 

  5. J. Goldstone, A. Salam, and S. Weinberg,Phys. Rev. 127, 965 (1962).

    Google Scholar 

  6. S. A. Bludman and A. Klein,Phys. Rev. 131, 2364 (1963).

    Google Scholar 

  7. R. F. Streater,Proc. R. Soc. A 287, 510 (1965).

    Google Scholar 

  8. D. Kastler, D. Robinson, and A. Swieca,Comm. Math. Phys. 2, 108 (1966).

    Google Scholar 

  9. R. V. Lange,Phys. Rev. Lett. 14, 3 (1965).

    Google Scholar 

  10. H. Umezawa,Nuovo Cimento A 40, 450 (1965).

    Google Scholar 

  11. K. Nakagawa, R. N. Sen, and H. Umezawa,Nuovo Cimento 42, 565 (1966).

    Google Scholar 

  12. L. Leplae and H. Umezawa,Nuovo Cimento 44, 410 (1966).

    Google Scholar 

  13. H. Umezawa,Nuovo Cimento A 40, 469 (1965);Nuovo Cimento 38, 1415 (1965).

    Google Scholar 

  14. R. N. Sen and H. Umezawa,Nuovo Cimento 50, 53 (1967); L. Leplae, R. N. Sen, and H. Umezawa,Nuovo Cimento 49, 1 (1967).

    Google Scholar 

  15. A. K. Benson,Phys. Rev. B 7, 4158 (1973); A. K. Benson and D. M. Hatch,Phys. Rev. B 8, 4410 (1973).

    Google Scholar 

  16. P. Roman,An Introduction to Quantum Field Theory (Wiley, New York, 1967).

    Google Scholar 

  17. R. V. Lange,Phys. Rev. Lett. 14, 3 (1965).

    Google Scholar 

  18. L. Leplae and H. Umezawa,Nuovo Cimento 33, 379 (1964);J. Math. Phys. 10, 2038 (1969); L. Leplae, F. Mancini, and H. Umezawa,Phys. Rep. 10C, 000 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, A.K. Microscopic mechanism for the macroscopic asymmetry of superconductivity. Found Phys 8, 893–904 (1978). https://doi.org/10.1007/BF00715061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715061

Keywords

Navigation