Skip to main content
Log in

Heisenberg's microscope—A misleading illustration

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

According to the Rayleigh criterion of classical optics, the finite resolving power of a microscope is due to the width of the central peak of the Fraunhofer diffraction pattern produced by the microscope's finite lens aperture. During the last few decades, theories and techniques for superresolution beyond the Rayleigh criterion have been developed in classical optics. Thus, Heisenberg's microscope could also in principle be made to give superresolution and thereby appear to violate the uncertainty relation. We believe that this paradox is due to the inappropriate use of a definition, based purely on experimental convenience, to support a quantum mechanical theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger,Berliner Berichte 1930, 296–303.

  2. E. Merzbacher,Quantum Mechanics, 2nd ed. John Wiley, New York, 1970), pp. 157–161.

    Google Scholar 

  3. M. Bunge, Interpretation of Heisenberg's Inequalities, inDenken und Umdenken, H. Pfeiffer, ed. (R. Piper & Co., Verlag, Munchen, 1977), pp. 146–156.

    Google Scholar 

  4. W. Heisenberg,Z. Phys. 43, 172–198 (1927).

    Google Scholar 

  5. W. Heisenberg,The Physical Principles of Quantum Theory (Dover, New York, 1949), Chapter 2.

    Google Scholar 

  6. M. Jammer,The Philosophy of Quantum Mechanics (John Wiley, New York, 1974), Chapter 3.

    Google Scholar 

  7. D. J. Blokhinstev,Quantum Mechanics (D. Reidel, Dordrecht, Holland, 1964); D. Bohm,Quantum Theory (Prentice Hall, Englewood Cliffs New Jersey, 1951).

    Google Scholar 

  8. R. H. Dicke and J. P. Wittke,Introduction to Quantum Mechanics (Addison-Wesley, Menlo Park, California, 1960), Chapter 2.

    Google Scholar 

  9. J. W. Goodman,Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 133–136.

    Google Scholar 

  10. G. B. Parrent and B. J. Thompson,Physical Optics Note Book (Society of Photo-Optical Instrumentation Engineers, 1969).

  11. G. Toraldo di Francia,J. Opt. Soc. Am. 45, 497–501 (1955).

    Google Scholar 

  12. N. J. Bershad,J. Opt. Soc. Am. 59, 157–163 (1969).

    Google Scholar 

  13. M. Born and E. Wolf,Principles of Optics, 5th ed., (Pergamon, New York, 1975), pp. 416–417.

    Google Scholar 

  14. L. E. Ballentine,Rev. Mod. Phys. 42, 358–381 (1970).

    Google Scholar 

  15. G. Beck and G. M. Nussenzveig,Nuv. Cimento Ser. 10 9, 1068–1976 (1958).

    Google Scholar 

  16. P. Langlois, M. Cornier, R. Beaulieu, and M. Blanchard,J. Opt. Soc. Am. 67, 87–92 1977).

    Google Scholar 

  17. C. Roychoudhuri, Causality and Classical Interference and Diffraction Phenomena,Bol. Inst. Tonantzintla 2, 165 (1977); for abstracts seeJ. Opt. Soc. Am. 65, 1224A (1975),66, 1073A (1976).

    Google Scholar 

  18. W. E. Lamb, Jr.,Physics Today 22(A), 23 (1969).

    Google Scholar 

  19. C. Roychoudhuri,Bol. Inst. Tonantzintla 1, 259–264 (1975); C. Roychoudhuri, R. Machorro, and M. Cervantes,Bol. Inst. Tonantzintla 2, 55–62 (1976).

    Google Scholar 

  20. B. d'Espagnat,Conceptual Development of Quantum Mechanics (Benjamin, Menlo Park, California, 1971), p. 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roychoudhuri, C. Heisenberg's microscope—A misleading illustration. Found Phys 8, 845–849 (1978). https://doi.org/10.1007/BF00715058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715058

Keywords

Navigation