Skip to main content
Log in

Gravitation and electromagnetism

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We obtain a general relativistic unification of gravitation and electromagnetism by simply(1) restricting the metric so that it admits an orthonormal tetrad representation in which the spacelike vectors are curl-free, and(2) identifying the timelike vector as the potential for an electromagnetic field whose only sources are singularities. It follows that: (A) The energy density is everywhere nonnegative, (B) the space is flat if and only if the electromagnetic field vanishes, (C) the vector potential (through which all curvature enters) admits no invariant algebraic decomposition, and satisfies the covariant Lorentz condition identically, (D) the theory is free of “prior geometry,” (E) the electromagnetic self-energy of a spherically symmetric point charge equalsMC 2, (F) particles deviate from geodesic motion according to the Lorentz force law with radiative reaction, and (G) particles with all electromagnetic multipole structures are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger,Space-Time Structure, (Cambridge Univ. Press, 1954), p. 99.

  2. A. S. Eddington,The Mathematical Theory of Relativity, 2nd ed. (Cambridge University Press, 1960), p. 222.

  3. J. L. Synge,Relativity: The General Theory (North-Holland, Amsterdam, 1960).

    Google Scholar 

  4. J. L. Synge, inPerspectives in Geometry and Relativity, B. Hoffmann, ed. (Indiana University Press, Bloomington, 1966).

    Google Scholar 

  5. G. Y. Rainich,Trans. Am. Math. Soc. 27, 106 (1925).

    Google Scholar 

  6. C. W. Misner and J. A. Wheeler,Ann. Phys. (N.Y.) 2, 525 (1957).

    Google Scholar 

  7. D. Pandres, Jr.,J. Math. Phys. 3, 602 (1962).

    Google Scholar 

  8. C. Brans and R. H. Dicke,Phys. Rev. 124, 925 (1961).

    Google Scholar 

  9. D. Pandres, Jr.,Nuovo Cim. Lett. 8, 595 (1973).

    Google Scholar 

  10. J. L. Synge and A. Schild,Tensor Calculus (Univ. of Toronto Press, Toronto, 1949), p. 297.

    Google Scholar 

  11. R. H. Dicke,Phys. Rev. 125, 2163 (1962).

    Google Scholar 

  12. W. Pauli,Theory of Relativity (Pergamon Press, New York, 1958), p. 226.

    Google Scholar 

  13. H. Weyl,Naturwiss. 38, 73 (1951); and inProceedings of the Berne Conference (1955).

    Google Scholar 

  14. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (W. H. Freeman, San Francisco, 1973), p. 429.

    Google Scholar 

  15. J. L. Anderson,Principles of Relativity Physics (Academic Press, New York, 1967), p. 83.

    Google Scholar 

  16. A. Komar,Phys. Rev. 113, 934 (1959).

    Google Scholar 

  17. L. Witten, ed.,Gravitation: An Introduction to Current Research (Wiley, New York, 1962), p. 195.

    Google Scholar 

  18. P. A. M. Dirac,Proc. Roy. Soc. (Lond.) A 167, 148 (1938).

    Google Scholar 

  19. C. Teitelboim,Phys. Rev. D 1, 1572 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandres, D. Gravitation and electromagnetism. Found Phys 7, 421–430 (1977). https://doi.org/10.1007/BF00711492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711492

Keywords

Navigation