Foundations of Physics

, Volume 3, Issue 4, pp 435–455 | Cite as

Time asymmetry and quantum equations of motion

  • T. E. PhippsJr.


Accepted quantum description is stochastic, yet history is nonstochastic, i.e., not representable by a probability distribution. Therefore ordinary quantum mechanics is unsuited to describe history. This is a limitation of the accepted quantum theory, rather than a failing of mechanics in general. To remove the limitation, it would be desirable to find a form of quantum mechanics that describes the future stochastically and the past nonstochastically. For this purpose it proves sufficient to introduce into quantum mechanics, by means of a perfected formal correspondence, certain analogs of the classical initial-condition constants. Through the restoration of such parameters at the quantum level one accomplishes a natural accommodation of time anisotropy, wave-function reduction, and “event” description by quantum mechanical equations of motion alone, without the need for extra postulates (e.g., a projection postulate). This requires a complete restructuring of quantum measurement theory.


Anisotropy Probability Distribution Quantum Mechanic Quantum Theory Quantum Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Gal-Or (ed.),Modern Developments in Thermodynamics, to be published.Google Scholar
  2. 2.
    H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1950).Google Scholar
  3. 3.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton, 1955).Google Scholar
  4. 4.
    T. E. Phipps, Jr.,Dialectica 23, 189 (1969).Google Scholar
  5. 5.
    T. E. Phipps, Jr.,Phys. Rev. 118, 1653 (1960).Google Scholar
  6. 6.
    T. E. Phipps, Jr., Document No. 6257, ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D. C. (1960).Google Scholar
  7. 7.
    T. E. Phipps, Jr.,Nature 195, 1088 (1962).Google Scholar
  8. 8.
    E. E. Witmer,Am. J. Phys. 35, 40 (1967).Google Scholar
  9. 9.
    E. P. Wigner, inThe Scientist Speculates, I. J. Good, ed. (Basic Books, New York, 1962), pp. 284–301.Google Scholar
  10. 10.
    A. Daneri, A. Loinger, and G. M. Prosperi,Nucl. Phys. 33, 297 (1962);Nuovo Cimento XLIVB, 119 (1966).Google Scholar
  11. 11.
    D. Bohm and J. Bub,Rev. Mod. Phys. 38, 453 (1966).Google Scholar
  12. 12.
    H. Margenau,Phys. Rev. 49, 240 (1936);Phil. Sci. 25, No. 1 (1958);30, No. 1 (1963);30, No. 2 (1963).Google Scholar
  13. 13.
    J. D. Sneed,Phil. Sci. 33, 22 (1966).Google Scholar
  14. 14.
    A. Fine,Phys. Rev. D 2, 2783 (1970).Google Scholar
  15. 15.
    N. Maxwell,Am. J. Phys. 40, 1431 (1972).Google Scholar
  16. 16.
    E. P. Gyftopoulos and G. N. Hatsopoulos, inA Critical Review of Thermodynamics, E. B. Stuart, B. Gal-Or, and A. J. Brainard (eds.), (Mono Book Corp., Baltimore, Maryland, 1970), pp. 77–82.Google Scholar
  17. 17.
    G. Süssmann, inObservation and Interpretation, S. Koerner, ed. (Butterworths, London, and Academic Press, New York, 1957).Google Scholar
  18. 18.
    H. Putnam,Phil. Sci. 31, No. 1 (1964).Google Scholar
  19. 19.
    L. N. Cooper and D. van Vechten,Am. J. Phys. 37, 1212 (1969).Google Scholar
  20. 20.
    P. A. M. Dirac,The Principles of Quantum Mechanics, 3rd ed. (Clarendon Press, Oxford, 1947).Google Scholar
  21. 21.
    H. Everett III,Rev. Mod. Phys. 29, 454 (1957); J. A. Wheeler,Rev. Mod. Phys. 29, 463 (1957).Google Scholar
  22. 22.
    B. S. DeWitt and R. N. Graham,Am. J. Phys. 39, 724 (1971).Google Scholar
  23. 23.
    D. Bohm, inObservation and Interpretation, S. Koerner, ed. (Butterworths, London, and Academic Press, New York, 1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • T. E. PhippsJr.
    • 1
  1. 1.Naval Ordnance LaboratoryWhite Oak

Personalised recommendations