Advertisement

Foundations of Physics

, Volume 10, Issue 1–2, pp 109–136 | Cite as

Work and energy in electrostatic and magnetic systems

  • Roger Howard
This Issue Is Dedicated To The Memory Of Wolfgang Yourgrau

Abstract

The equations of motion are obtained for closed systems of charged particles interacting with either an electric or a magnetic field. In each case they include constraints, expressed by the laws of induction, which are of importance in giving a complete specification of the systems usually treated in thermal physics. There are equivalent alternative formulations of the equations of motion, which permit designation of different subsystems; a discussion of these subsystems, their interrelationship, and their external parameters clarifies the significance and applicability of the various expressions for electrical and magnetic work that appear in the general literature. Quantum mechanical treatment of particular subsystems provides a basis for application of statistical mechanics, leading to the identification of appropriate thermodynamic potentials.

Keywords

Magnetic Field Charged Particle Statistical Mechanic Closed System Alternative Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1963).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon Press, Oxford, 1970).Google Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields (Pergamon Press, Oxford, 1971), Chapter 3.Google Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Pergamon Press, Oxford, 1965), Chapter 15.Google Scholar
  5. 5.
    E. A. Guggenheim,Proc. Roy. Soc. (Lond.) A155, 49 (1936).Google Scholar
  6. 6.
    E. A. Guggenheim,Proc. Roy. Soc. (Lond.) A155, 70 (1936).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz,Mechanics (Pergamon Press, Oxford, 1969), Section 41.Google Scholar
  8. 8.
    P. T. LandsbergThermodynamics (Interscience, New York, 1961), Section 32.Google Scholar
  9. 9.
    J. H. Van Vleck,The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, Oxford, 1932), Chapter 1.Google Scholar
  10. 10.
    H. J. Van Leeuwen,J. Phys. Radium (6)2, 361 (1921).Google Scholar
  11. 11.
    G. H. Livens,Proc. Roy. Lond. A 93, 20 (1917).Google Scholar
  12. 12.
    E. C. Stoner,Phil. Mag. 19, 565 (1935).Google Scholar
  13. 13.
    E. C. Stoner,Phil. Mag. 23, 833 (1937).Google Scholar
  14. 14.
    H. B. G. Casimir,Magnetism and Very Low Temperature (Cambridge University Press, Cambridge, 1940).Google Scholar
  15. 15.
    H. A. Leupold,Am. J. Phys. 37, 1047 (1969).Google Scholar
  16. 16.
    H. A. Leupold,Am. J. Phys. 39, 1094 (1971).Google Scholar
  17. 17.
    H. A. Leupold,Am. J. Phys. 39, 1099 (1971).Google Scholar
  18. 18.
    E. A. Guggenheim,Thermodynamics, 5th ed. (North-Holland, Amsterdam, 1967).Google Scholar
  19. 19.
    V. Heine,Proc. Camb. Phil. Soc. 52, 546 (1956).Google Scholar
  20. 20.
    G. H. Wannier,Statistical Physics (Wiley, New York, 1966), Section 8.2.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Roger Howard
    • 1
  1. 1.Physics DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations