Foundations of Physics

, Volume 10, Issue 1–2, pp 7–31 | Cite as

The implicate order, algebras, and the spinor

  • F. A. M. Frescura
  • B. J. Hiley
This Issue Is Dedicated To The Memory Of Wolfgang Yourgrau


We review some of the essential novel ideas introduced by Bohm through the implicate order and indicate how they can be given mathematical expression in terms of an algebra. We also show how some of the features that are needed in the implicate order were anticipated in the work of Grassmann, Hamilton, and Clifford. By developing these ideas further we are able to show how the spinor itself, when viewed as a geometric object within a geometric algebra, can be given a meaning which transcends the notion of the usual metric geometry in the sense that it must be regarded as an element of a broader and more general pregeometry.


Mathematical Expression Geometric Object Geometric Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bohm,Found. Phys. 1, 359 (1971).Google Scholar
  2. 2.
    D. Bohm,Found. Phys. 4, 139 (1973).Google Scholar
  3. 3.
    H. Bergson,Evolution Créatrice (Alcan, Paris, 1913 (Creative Evolution), Macmillan, London, (1922).Google Scholar
  4. 4.
    A. Eeinstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  5. 5.
    N. Bohr,Atomic Physics and Human Knowledge (Science Editions, New York, 1961).Google Scholar
  6. 6.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  7. 7.
    H. P. Stapp,Phys. Rev. D 3, 1303 (1971).Google Scholar
  8. 8.
    J. L. Lopes and M. Paty,Quantum Mechanics, A Half Century Later (Reidel, Dordrecht, Holland, 1977).Google Scholar
  9. 9.
    D. Bohm,Phys. Rev. 85, 166, 180 (1952).Google Scholar
  10. 10.
    D. Bohm and B. J. Hiley,Found. Phys. 5, 93 (1975).Google Scholar
  11. 11.
    C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento 52B: 15 (1979).Google Scholar
  12. 12.
    J. A. Wheeler, inBattelle Rencontres, C. DeWitt and J. A. Wheeler, eds. (Benjamin, New York, 1968).Google Scholar
  13. 13.
    D. Bohm, B. J. Hiley, and A. E. G. Stuart,Int. J. Theor. Phys. 3, 171 (1970).Google Scholar
  14. 14.
    R. Penney,Nuovo Cimento 3 B, 95 (1971).Google Scholar
  15. 15.
    H. G. Grassmann,Gesammette Mathematische und Physikalische Werke (Leipzig, 1894).Google Scholar
  16. 16.
    W. R. Hamilton,Mathematical Papers (Cambridge, 1967).Google Scholar
  17. 17.
    A. C. Lewis,Ann. Sci. 34, 104 (1977).Google Scholar
  18. 18.
    T. L. Hankins, inMotion and Time, Space and Matter, P. K. MacLamer and R. G. Turnbull, eds. (Ohio State University, 1976).Google Scholar
  19. 19.
    D. Hestenes,Am. J. Phys. 39, 1013 (1971);J. Math. Phys. 16, 556 (1975).Google Scholar
  20. 20.
    W. J. Gibbs,Nature 44, 70 (1891).Google Scholar
  21. 21.
    M. Jammer,The Philosophy of Quantum Mechanics (Wiley-Interscience, New York, 1974).Google Scholar
  22. 22.
    P. A. M. Dirac,Phys. Rev. 139 B, 684 (1965).Google Scholar
  23. 23.
    E. T. Whittaker,Proc. Roy. Soc. A 158, 38 (1937).Google Scholar
  24. 24.
    E. Cartan,Bull. Soc. Math. France 41, 53 (1913).Google Scholar
  25. 25.
    R. Penrose, inBattelle Rencontres, C. M. DeWitt and J. A. Wheeler, eds. (Benjamin, New York, 1968).Google Scholar
  26. 26.
    E. Cartan,Lecons sur la Theorie des Spineurs (Hermann, Paris, 1938) (English trans., MIT Press, Cambridge, Mass., 1966).Google Scholar
  27. 27.
    R. Brauer and H. Weyl,Am. J. Math. 57, 425 (1935).Google Scholar
  28. 28.
    A. Eddington,Relativity Theory of Protons and Electrons (Cambridge, 1936).Google Scholar
  29. 29.
    F. Sauter,Z. Phys. 63, 803 (1930);64, 295 (1930).Google Scholar
  30. 30.
    G. Temple,Proc. Roy. Soc. 127 A, 339, 349 (1930).Google Scholar
  31. 31.
    M. Riesz, inComptes Rendus 10me Cong. Math. Scand. (Copenhagen, 1946), p. 123; inComptes Rendus 12me Cong. Math. Scand. (Lund, 1953), p. 241.Google Scholar
  32. 32.
    I. R. Porteous,Topological Geometry (Van Nostrand Reinhold, London, 1969).Google Scholar
  33. 33.
    T. Kahan,The Theory of Groups in Classical and Quantum Theory (Oliver and Boyd, London, 1965).Google Scholar
  34. 34.
    J. Wess and B. Zumino,Nucl. Phys. B 70, 39 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • F. A. M. Frescura
    • 1
  • B. J. Hiley
    • 1
  1. 1.Department of Physics, Birkbeck CollegeUniversity of LondonEngland

Personalised recommendations