Foundations of Physics

, Volume 6, Issue 3, pp 317–339 | Cite as

New four-dimensional symmetry

  • J. P. Hsu


We propose a new picture of nature in which there are only two fundamental universal constantsè ē (≡e/c) andh(≡ħ/c). Our theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincaré-Einstein principle of relativity for the laws of physics and the Newtonian concept of time. We obtain a new space-light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the “lifetime dilatation” of unstable particles, the Michelson-Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Dopplerfrequency shift, which can be tested experimentally by measuring the second-order frequency shift.


Frequency Shift Experimental Fact Unstable Particle Usual Theory Symmetry Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Stoops, ed.,The Quantum Theory of Fields (Interscience, New York, 1962), pp. 37–99.Google Scholar
  2. 2.
    P. A. M. Dirac,Rev. Mod. Phys. 21, 392 (1949);Proc. Roy. Soc. (London) A246, 326 (1958); J. P. Hsu,Ann. Phys. (N.Y.) 75, 479 (1973).Google Scholar
  3. 3.
    J. P. Hsu,Phys. Rev. D 5, 981 (1972).Google Scholar
  4. 4.
    J. P. Hsu and M. Hongoh,Phys. Rev. D 6, 256 (1972).Google Scholar
  5. 5.
    E. U. Condon and H. Odishaw,Handbook of Physics (McGraw-Hill, 1967), pp. 6-158–6-165.Google Scholar
  6. 6.
    A. Shadowitz,Special Relativity (W. B. Saunders Co., Toronto, 1968), pp. 157–173; G. C. Babcock and T. G. Bergman,J. Opt. Soc. Am. 54, 147 (1964); T. A. Filippas and J. G. Fox,Phys. Rev. 135, B1071 (1964); T. Alväger, F. J. M. Farley, J. Kjellman, and I. Wallin,Phys. Lett. 12, 260 (1964).Google Scholar
  7. 7.
    H. E. Ives and G. R. Stillwell,J. Opt. Am. Soc. 28, 215 (1938);31, 369 (1941); H. I. Mandelberg and L. Witten,J. Opt. Am. Soc. 52, 529 (1962); see also T. P. Gill,The Doppler Effect (Academic Press, 1965), pp. viii–ix and 140–141.Google Scholar
  8. 8.
    H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff,Phys. Rev. Lett. 4, 165 (1960); W. Kundig,Phys. Rev. 129, 2371 (1963).Google Scholar
  9. 9.
    J. P. Cedarholm, G. F. Bland, B. L. Havens, and C. H. Towns,Phys. Rev. Lett. 1, 342 (1958).Google Scholar
  10. 10.
    H. P. Robertson,Rev. Mod. Phys. 21, 378 (1949).Google Scholar
  11. 11.
    A. P. French,Special Relativity (W. W. Norton and Co., New York, 1968), pp. 72–74.Google Scholar
  12. 12.
    R. Resnick,Relativity and Early Quantum Theory (Wiley, New York, 1972), p. 41.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • J. P. Hsu
    • 1
  1. 1.Institute of Theoretical PhysicsMcGill UniversityMontrealCanada

Personalised recommendations