Skip to main content
Log in

Quantum theory and time asymmetry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The relation between quantum measurement and thermodynamically irreversible processes is investigated. The reduction of the state vector is fundamentally asymmetric in time and shows an observer-relatedness which may explain the double interpretation of the state vector as a representation of physical states as well as ofinformation about physical states. The concept of relevance being used in all statistical theories of irreversible thermodynamics is demonstrated to be based on the same observer-relatedness. Quantum theories of irreversible processes implicitly use an objectivized process of state vector reduction. The conditions for the reduction are discussed, and it is concluded that the final (subjective) observer system may be carried by a space point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ludwig,Z. Physik 135, 483 (1953).

    Google Scholar 

  2. A. Danieri, A. Loinger, and G. Prosperi,Nucl. Phys. 33, 297 (1962).

    Google Scholar 

  3. W. Weidlich,Z. Physik 205, 199 (1967).

    Google Scholar 

  4. I. Prigogine and L. Rosenfeld,Nature 240, 25 (1972).

    Google Scholar 

  5. O. Kübler and H. D. Zeh,Ann. Phys. (N.Y.) 76, 405 (1973).

    Google Scholar 

  6. W. Heisenberg,Physik und Philosophie (Hirzel, Stuttgart, 1972).

    Google Scholar 

  7. B. d'Espagnat,Conceptual Foundations of Quantum Theory (Benjamin, New York, 1971).

    Google Scholar 

  8. D. J. Bohm and B. J. Hiley,Found. Phys. 3, 93 (1975).

    Google Scholar 

  9. A. Einstein, N. Rosen, and B. Podolski,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  10. D. Bohm and Y. Aharonov,Phys. Rev. 108, 1070 (1957).

    Google Scholar 

  11. J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978).

    Google Scholar 

  12. J. S. Bell,Physics 1, 195 (1964).

    Google Scholar 

  13. K. Baumann,Z. Naturforsch. A 25, 1954 (1970);Acta Phys. Austr. 36, 1 (1972).

    Google Scholar 

  14. H. D. Zeh,Found. Phys. 1, 69 (1970).

    Google Scholar 

  15. H. Everett III,Rev. Mod. Phys. 29, 454 (1957).

    Google Scholar 

  16. R. Zwanzig, inBoulder Lectures in Theoretical Physics, Vol. 3 (1960), p. 106.

    Google Scholar 

  17. L. Van Hove,Physica 22, 343 (1956).

    Google Scholar 

  18. I. Prigogine,Nonequilibrium Statistical Mechanics (New York, 1962).

  19. P. N. Argyres and P. L. Kelly,Phys. Rev. 134, A98 (1964).

  20. R. M. Lewis,J. Math. Phys. 8, 1448 (1967).

    Google Scholar 

  21. A. Wehrl,Rev. Mod. Phys. 50, 221 (1978).

    Google Scholar 

  22. R. Mirman,Found. Phys. 5, 491 (1975).

    Google Scholar 

  23. L. Szilard,Z. Physik 53, 840 (1929).

    Google Scholar 

  24. L. Brillouin,Science and Information Theory (Academic, New York, 1956).

    Google Scholar 

  25. H. D. Zeh, inProc. 49th Enrico Fermi School of Physics, B. d'Espagnat, ed. (Academic, New York, 1972), p. 263.

    Google Scholar 

  26. E. P. Wigner,Am. J. Phys. 31, 6 (1963).

    Google Scholar 

  27. J. M. Jauch,Foundations of Quantum Mechanics (Addison-Weley, Reading, Mass., 1968).

    Google Scholar 

  28. F. London and E. Bauer,La théorie de l'observation mécanique quantique (Hermann, Paris, 1939).

    Google Scholar 

  29. E. P. Wigner, inThe Scientist Speculates, L. J. Good, ed. (Heinemann, London, 1962).

    Google Scholar 

  30. H. D. Zeh,Found. Phys. 5, 371 (1975).

    Google Scholar 

  31. Ph. Pearle,Phys. Rev. D 13, 857 (1976); Toward Explaining Why Events Occur, preprint (1978).

    Google Scholar 

  32. D. Bedford and D. Wang,Nuovo Cimento 26 B, 313 (1975).

    Google Scholar 

  33. C. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 1217.

    Google Scholar 

  34. E. Schmidt,Math. Annalen 63, 433 (1907).

    Google Scholar 

  35. E. Schrödinger,Proc. Cambr. Phil. Soc. 31, 555 (1935).

    Google Scholar 

  36. H. D. Zeh, inProc. of the 4th Conference on the Unity of the Sciences (Int. Cultural Foundation, New York, 1975), p. 287.

    Google Scholar 

  37. R. W. Sperry, inThe Neurosciences Third Study Program, F. O. Schmidt and F. G. Worden, edts. (MIT Press, Cambridge, Mass., 1974).

    Google Scholar 

  38. H. D. Zeh,Found. Phys. 3, 109 (1973).

    Google Scholar 

  39. T. Gold, ed.,The Nature of Time (Cornell, Ithaca, N.Y., 1967).

    Google Scholar 

  40. B. Gal-Or,Modern Developments in Thermodynamics (Wiley, New York, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeh, H.D. Quantum theory and time asymmetry. Found Phys 9, 803–818 (1979). https://doi.org/10.1007/BF00708694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708694

Keywords

Navigation