Advertisement

Foundations of Physics

, Volume 7, Issue 9–10, pp 723–733 | Cite as

Diagrammatic review and implications of the self-consistent field theory method

  • Alvin K. Benson
Article
  • 57 Downloads

Abstract

Some of the most intriguing and important phenomena in modern many-body physics are explainable in terms of self-consistent quantum mechanical field theory. This is the powerful theory developed by Umezawa and co-workers and modified by Benson and Hatch in applications to ferromagnetism. It is usually lengthy and involved mathematically. Thus, it is very helpful and meaningful to see its overall step-by-step progress in simple, diagrammatic flow starting from basic principles, with a ferromagnetic model as an example. As one immediately notes, there are two paths leading to very powerful physical conclusions and implications, and something most interesting is that each path implies the other. Many useful examples of applications of these methods are noted and some future possible applications are cited.

Keywords

Field Theory Basic Principle Diagrammatic Flow Theory Method Important Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Benson,Int. J. Theoret. Phys., to be published; H. Umezawa,Acta Phys. Hung. 19, 9 (1965).Google Scholar
  2. 2.
    J. von Neumann,Math. Ann. 104, 570 (1931).Google Scholar
  3. 3.
    D. M. Hatch, private communication, Brigham Young Univ. (1972).Google Scholar
  4. 4.
    A. K. Benson,Phys. Rev. B 7, 4158 (1973); A. K. Benson and D. M. Hatch,Phys. Rev. B 8, 4410 (1973).Google Scholar
  5. 5.
    A. K. Benson,Int. J. Theoret. Phys., to be published.Google Scholar
  6. 6.
    G. Jona-Lasinio and Y. Nambu,Phys. Rev. 122, 345 (1961).Google Scholar
  7. 7.
    H. Umezawa,Nuovo Cimento 40A, 450 (1965).Google Scholar
  8. 8.
    H. Matsumoto, N. J. Papastamatiou, and H. Umezawa,Nucl. Phys. B97, 61 (1975); H. Matsumoto, H. Umezawa, G. Vitiello, and J. K. Wyly,Phys. Rev. D 9, 2806 (1974); H. Umezawa, Self-Consistent Quantum Field Theory and Symmetry Breaking, inRenormalization and Invariance in Quantum Field Theory (Plenum Publishing Co., New York, 1973).Google Scholar
  9. 9.
    H. P. Dürr, Goldstone Theorem and Possible Applications, inFundamental Problems in Elementary Particle Physics (Interscience, New York, 1968); K. L. Nagy, T. Nagy, and G. Pósik,Acta Phys. Hung. 19, 91 (1965); K. Nakagawa,Nuovo Cimento 50A, 37 (1967).Google Scholar
  10. 10.
    G. S. Guralnik,Phys. Rev. 136, 1404 (1964).Google Scholar
  11. 11.
    H. C. Ohanian,Phys. Rev. 184, 1305 (1969).Google Scholar
  12. 12.
    H. C. Tze and Z. F. Ezawa,Phys. Lett. 55B, 63 (1975).Google Scholar
  13. 13.
    H. Matsumoto, N. J. Papastamatiou, and H. Umezawa,Nucl. Phys. B97, 90 (1975).Google Scholar
  14. 14.
    B. Johansson and R. D. Mattuck,Adv. Phys. 17, 509 (1968).Google Scholar
  15. 15.
    G. Emch,J. Math. Phys. 8, 13 (1967).Google Scholar
  16. 16.
    A. K. Benson,Int. J. Theoret. Phys., to be published.Google Scholar
  17. 17.
    M. S. Green, Critical Phenomena, inMany-Body Problems and Other Selected Topics in Theoretical Physics (Gordon and Breach, New York, 1968); R. A. Ferrell, Field Theory of Phase Transitions, inContemporary Physics I (International Atomic Energy Agency, Vienna, 1969); R. Brout,Phase Transitions (Benjamin, New York, 1965).Google Scholar
  18. 18.
    A. Coniglio and M. Marinaro,Nuovo Cimento 48B, 262 (1967).Google Scholar
  19. 19.
    A. DeLuca, L. M. Ricciardi, and H. Umezawa,Physica 40, 61 (1968).Google Scholar
  20. 20.
    L. Leplae and H. Umezawa,Nuovo Cimento 44, 410 (1966).Google Scholar
  21. 21.
    L. Leplae and H. Umezawa,J. Math. Phys. 10, 2038 (1969); L. Leplae, H. Umezawa, and F. Mancini,Phys. Reports 10C (1974).Google Scholar
  22. 22.
    L. Leplae, F. Mancini, and H. Umezawa,Nuovo Cimento Lett. 3, 153 (1970);Nuovo Cimento 10B, 267 (1972);Nuovo Cimento 9B, 233 (1972);Nuovo Cimento Lett. 9, 711 (1974); L. Leplae, V. Srinivasan, and H. Umezawa,Phys. Lett. 45A, 177 (1973).Google Scholar
  23. 23.
    Y. Takahashi and H. Umezawa,Collective Phenomena,2, 55 (1975).Google Scholar
  24. 24.
    L. Leplae, R. N. Sen, and H. Umezawa,Nuovo Cimento 49, 1 (1967).Google Scholar
  25. 25.
    D. M. Hatch, private communication, Brigham Young Univ. (1972); K. Hepp,Helv. Phys. Acta 45, 237 (1972).Google Scholar
  26. 26.
    D. M. Hatch,Int. J. Quant. Chem. 9, 649 (1975).Google Scholar
  27. 27.
    I. Stuart, Y. Takahashi, and H. Umezawa, Preprint, Univ. of Alberta (1975).Google Scholar
  28. 28.
    P. C. Martin, Solid-State Problems, inContemporary Physics I (International Atomic Energy Agency, Vienna, 1969).Google Scholar
  29. 29.
    A. K. Benson and D. M. Hatch,Phys. Rev. B 8, 4410 (1973).Google Scholar
  30. 30.
    A. K. Benson,Phys. Rev. B 7, 4158 (1973).Google Scholar
  31. 31.
    A. K. Benson and D. M. Hatch,Int. J. Theoret. Phys. 12, 321 (1975).Google Scholar
  32. 32.
    R. V. Lange,Phys. Rev. Lett. 14, 3 (1965).Google Scholar
  33. 33.
    A. K. Benson and D. M. Hatch,Phys. Rev. B 8, 4410 (1973).Google Scholar
  34. 34.
    M. N. Shah, H. Umezawa, and G. Vitiello,Phys. Rev. B 10, 4724 (1974).Google Scholar
  35. 35.
    A. K. Benson,Phys. Rev. B 7, 4158 (1973).Google Scholar
  36. 36.
    A. K. Benson and D. M. Hatch,Phys. Rev. B 8, 4410 (1973).Google Scholar
  37. 37.
    H. Wagner,Z. Phys. 195, 273 (1966).Google Scholar
  38. 38.
    A. K. Benson,Int. J. Theoret. Phys., to be published.Google Scholar

Copyright information

© Plenum Publishing Corp 1977

Authors and Affiliations

  • Alvin K. Benson
    • 1
  1. 1.Department of PhysicsIndiana University SoutheastNew Albany

Personalised recommendations