Foundations of Physics

, Volume 7, Issue 9–10, pp 673–703 | Cite as

Projective spacetime

  • B. E. Eichinger


It is suggested that the world is locally projectively flat rather than Euclidean. From this postulate it is shown that an (N+1)-particle system has the global geometry of the symmetric spaceSO(4,N+1)/SO(4)×SO(N+1). A complex representation also exists, with structureSU(2,N+1)/S[U(2)×U(N+1)]. Several aspects of these geometrics are developed. Physical states are taken to be eigenfunctions of the Laplace-Beltrami operators. The theory may provide a rational basis for comprehending the groupsSO(4, 2),SU(2)×U(1),SU(3), etc., of current interest.


Physical State Rational Basis Particle System Complex Representation Current Interest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. H. Colson,The Week (Cambridge Univ. Press, London, 1926).Google Scholar
  2. 2.
    F. Hoyle and J. V. Narlikar,Proc. R. Soc. A282, 191 (1964).Google Scholar
  3. 3.
    P. A. M. Dirac,Ann. Math. 37, 429 (1936).Google Scholar
  4. 4.
    G. Mack and A. Salam,Ann. Phys. (N.Y.) 53, 174 (1969), and references contained therein.Google Scholar
  5. 5.
    A. O. Barut and H. Kleinert,Phys. Rev. 160, 1149 (1967).Google Scholar
  6. 6.
    H. Kleinert,Springer Tracts in Modern Physics, Vol. 49 (1969), p. 90.Google Scholar
  7. 7.
    R. Wilson and R. F. Peierls,Ann. Phys. (N.Y.) 81, 15 (1973).Google Scholar
  8. 8.
    O. Schreier and E. Sperner,Projective Geometry of N Dimensions, C. A. Rogers, transl. (Chelsea, New York, 1961).Google Scholar
  9. 9.
    W. V. D. Hodge and D. Pedoe,Methods of Algebraic Geometry (Cambridge Univ. Press, London, 1946).Google Scholar
  10. 10.
    L. K. Hua and B. A. Rozenfel'd,Acta Math. Sinica 8, 132 (1958) [English transl.,Chinese Math. 8, 726 (1966)].Google Scholar
  11. 11.
    L. K. Hua,Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Trans. Math. Monographs, Vol. 6 (Am. Math. Soc., Providence, Rhode Island, 1963).Google Scholar
  12. 12.
    S. Helgason,Differential Geometry and Symmetric Spaces (Academic Press, New York, 1962).Google Scholar
  13. 13.
    E. Calabi,Ann. Math. 58, 1 (1953); E. Calabi and E. Vesentini,Ann. Math. 71, 472 (1960).Google Scholar
  14. 14.
    L. K. Hua,Am. J. Math. 66, 470 (1944).Google Scholar
  15. 15.
    C. L. Siegel,Symplectic Geometry (Academic Press, New York, 1964); reprinted fromAmer. J. Math. 65, 1 (1943).Google Scholar
  16. 16.
    S. I. Goldberg,Curvature and Homology (Academic Press, New York, 1962), pp. 158–168.Google Scholar
  17. 17.
    S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vols. I and II (Interscience, New York, 1963).Google Scholar
  18. 18.
    M. Bander and C. Itzykson,Rev. Mod. Phys. 38, 330 (1966).Google Scholar
  19. 19.
    H. Bateman,Proc. Lond. Math. Soc. 8, 223 (1910).Google Scholar
  20. 20.
    I. A. Malkin and V. I. Man'ko,Sov. Phys.—JETP Lett. 2, 146 (1965).Google Scholar
  21. 21.
    K. C. Tripathy, R. Gupta, and J. D. Anand,J. Math. Phys. 16, 1139 (1975).Google Scholar
  22. 22.
    R. Penrose and M. A. H. MacCallum,Phys. Reports 6, 241 (1972).Google Scholar
  23. 23.
    S. Weinberg,Rev. Mod. Phys. 46, 255 (1974).Google Scholar

Copyright information

© Plenum Publishing Corp 1977

Authors and Affiliations

  • B. E. Eichinger
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattle

Personalised recommendations