Foundations of Physics

, Volume 7, Issue 9–10, pp 629–671 | Cite as

Currents in a theory of strong interaction based on a fiber bundle geometry

  • W. Drechsler


A fiber bundle constructed over spacetime is used as the basic underlying framework for a differential geometric description of extended hadrons. The bundle has a Cartan connection and possesses the de Sitter groupSO(4, 1) as structural group, operating as a group of motion in a locally defined space of constant curvature (the fiber) characterized by a radius of curvatureR≈10−13 cm related to the strong interactions. A hadronic matter field ω(x, ζ) is defined on the bundle space, withx the spacetime coordinate and ζ varying in the local fiber. The components of a generalized tensor current ℑ μab (M) (x) are introduced, involving a bilinear expression in the fields ω(x, ζ) and ωΔ(x, ζ) integrated over the local fiber at the pointx. This hadronic matter current is considered as a source current for the underlying fiber geometry by coupling it in a gauge-invariant manner to the curvature expressions derived from the bundle connection coefficients, which are associated here with strong interaction effects, i.e., play the role of meson fields induced in the geometry. Studying discrete symmetry transformations between the 16 differently soldered Cartan bundles, a generalized matter-antimatter conjugation Ĉ is established which leaves the basic current-curvature equations Ĉ-invariant. The discrete symmetry transformation Ĉ turns out to be the direct product of an ordinary charge conjugation for the Dirac point-spinor part of ω(x, ζ) and an internal\(\hat P\hat T\) transformation applied globally on the bundle to the fiber (i.e., de Sitter) part of ω(x, ζ).


Fiber Bundle Hadronic Matter Cartan Connection Local Fiber Meson Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Drechsler,Fortschr. Phys. 23, 607 (1975).Google Scholar
  2. 2.
    W. Drechsler, Wave equations for extended hadrons, inGroup Theoretical Methods in Physics (Fourth Intern. Colloquium, Nijmegen, 1975), A. Janner, T. Janssen, and M. Boon, eds.,Lecture Notes in Physics, Vol. 50 (Springer-Verlag, 1976), p. 37.Google Scholar
  3. 3.
    R. Utiyama,Phys. Rev. 101, 1597 (1956); T. W. B. Kibble,J. Math. Phys. 2, 212 (1961).Google Scholar
  4. 4.
    D. W. Sciama, inRecent Developments in General Relativity (Pergamon Press, London, 1962), p. 415.Google Scholar
  5. 5.
    C. N. Yang and R. L. Mills,Phys. Rev. 96, 191 (1954).Google Scholar
  6. 6.
    E. Cartan,Bull. Sc. Math. 48, 294 (1924);Acta Math. 48, 1 (1926);Ann. Math. 38, 1 (1937).Google Scholar
  7. 7.
    Ch. Ehresman, Les connexions infinitesimales dans un espace fibré différentiable, inColloque de Topologie (Bruxelles, 1950), p. 29.Google Scholar
  8. 8.
    R. Takahashi,Bull. Soc. Math. France 91, 298 (1963).Google Scholar
  9. 9.
    H. Flanders,Differential Forms (Academic Press, New York, 1963).Google Scholar
  10. 10.
    P. Roman,Theory of Elementary Particles (North-Holland, Amsterdam, 1960).Google Scholar
  11. 11.
    L. Infeld and A. Schild,Rev. Mod. Phys. 21, 408 (1949).Google Scholar
  12. 12.
    P. A. M. Dirac,Proc. R. Soc. A167, 148 (1938).Google Scholar
  13. 13.
    J. L. Synge,Relativity: The General Theory (North-Holland, Amsterdam, 1960), Chapter VI.Google Scholar
  14. 14.
    C. N. Yang,Phys. Rev. Lett. 33, 445 (1974).Google Scholar
  15. 15.
    T. T. Wu and C. N. Yang,Phys. Rev. D 12, 3843 (1975).Google Scholar
  16. 16.
    S. Mandelstam,Ann. Phys. 19, 1 (1962).Google Scholar
  17. 17.
    S. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co., New York, 1961).Google Scholar
  18. 18.
    S. Coleman, Classical lumps and their quantum descendents, inErice-Lectures (1975).Google Scholar
  19. 19.
    R. F. Streater and A. S. Wightman,PCT, Spin and Statistics, and All That (Benjamin, New York, 1964).Google Scholar
  20. 20.
    E. Cartan,Oeuvres complètes, Partie III, Vol. 2 (Gauthier-Villars, Paris, 1955), p. 1259.Google Scholar
  21. 21.
    F. Schwarz, Classification of the irreducible representations of theO(4, 1) de Sitter group, inLectures in Theoretical Physics XIII, Boulder, 1970, A. Barut and W. E. Brittin, eds., p. 53.Google Scholar
  22. 22.
    E. Schrödinger,Expanding Universe (Cambridge University Press, 1956).Google Scholar
  23. 23.
    I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin,Generalized Functions, Vol. 5 (Academic Press, London, 1966), Chapter V.Google Scholar

Copyright information

© Plenum Publishing Corp 1977

Authors and Affiliations

  • W. Drechsler
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchenGerman Federal Republic

Personalised recommendations