Skip to main content
Log in

Currents in a theory of strong interaction based on a fiber bundle geometry

Foundations of Physics Aims and scope Submit manuscript

Abstract

A fiber bundle constructed over spacetime is used as the basic underlying framework for a differential geometric description of extended hadrons. The bundle has a Cartan connection and possesses the de Sitter groupSO(4, 1) as structural group, operating as a group of motion in a locally defined space of constant curvature (the fiber) characterized by a radius of curvatureR≈10−13 cm related to the strong interactions. A hadronic matter field ω(x, ζ) is defined on the bundle space, withx the spacetime coordinate and ζ varying in the local fiber. The components of a generalized tensor current ℑ (M) μab (x) are introduced, involving a bilinear expression in the fields ω(x, ζ) and ωΔ(x, ζ) integrated over the local fiber at the pointx. This hadronic matter current is considered as a source current for the underlying fiber geometry by coupling it in a gauge-invariant manner to the curvature expressions derived from the bundle connection coefficients, which are associated here with strong interaction effects, i.e., play the role of meson fields induced in the geometry. Studying discrete symmetry transformations between the 16 differently soldered Cartan bundles, a generalized matter-antimatter conjugation Ĉ is established which leaves the basic current-curvature equations Ĉ-invariant. The discrete symmetry transformation Ĉ turns out to be the direct product of an ordinary charge conjugation for the Dirac point-spinor part of ω(x, ζ) and an internal\(\hat P\hat T\) transformation applied globally on the bundle to the fiber (i.e., de Sitter) part of ω(x, ζ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W. Drechsler,Fortschr. Phys. 23, 607 (1975).

    Google Scholar 

  2. W. Drechsler, Wave equations for extended hadrons, inGroup Theoretical Methods in Physics (Fourth Intern. Colloquium, Nijmegen, 1975), A. Janner, T. Janssen, and M. Boon, eds.,Lecture Notes in Physics, Vol. 50 (Springer-Verlag, 1976), p. 37.

  3. R. Utiyama,Phys. Rev. 101, 1597 (1956); T. W. B. Kibble,J. Math. Phys. 2, 212 (1961).

    Google Scholar 

  4. D. W. Sciama, inRecent Developments in General Relativity (Pergamon Press, London, 1962), p. 415.

    Google Scholar 

  5. C. N. Yang and R. L. Mills,Phys. Rev. 96, 191 (1954).

    Google Scholar 

  6. E. Cartan,Bull. Sc. Math. 48, 294 (1924);Acta Math. 48, 1 (1926);Ann. Math. 38, 1 (1937).

    Google Scholar 

  7. Ch. Ehresman, Les connexions infinitesimales dans un espace fibré différentiable, inColloque de Topologie (Bruxelles, 1950), p. 29.

  8. R. Takahashi,Bull. Soc. Math. France 91, 298 (1963).

    Google Scholar 

  9. H. Flanders,Differential Forms (Academic Press, New York, 1963).

    Google Scholar 

  10. P. Roman,Theory of Elementary Particles (North-Holland, Amsterdam, 1960).

    Google Scholar 

  11. L. Infeld and A. Schild,Rev. Mod. Phys. 21, 408 (1949).

    Google Scholar 

  12. P. A. M. Dirac,Proc. R. Soc. A167, 148 (1938).

    Google Scholar 

  13. J. L. Synge,Relativity: The General Theory (North-Holland, Amsterdam, 1960), Chapter VI.

    Google Scholar 

  14. C. N. Yang,Phys. Rev. Lett. 33, 445 (1974).

    Google Scholar 

  15. T. T. Wu and C. N. Yang,Phys. Rev. D 12, 3843 (1975).

    Google Scholar 

  16. S. Mandelstam,Ann. Phys. 19, 1 (1962).

    Google Scholar 

  17. S. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co., New York, 1961).

    Google Scholar 

  18. S. Coleman, Classical lumps and their quantum descendents, inErice-Lectures (1975).

  19. R. F. Streater and A. S. Wightman,PCT, Spin and Statistics, and All That (Benjamin, New York, 1964).

    Google Scholar 

  20. E. Cartan,Oeuvres complètes, Partie III, Vol. 2 (Gauthier-Villars, Paris, 1955), p. 1259.

    Google Scholar 

  21. F. Schwarz, Classification of the irreducible representations of theO(4, 1) de Sitter group, inLectures in Theoretical Physics XIII, Boulder, 1970, A. Barut and W. E. Brittin, eds., p. 53.

  22. E. Schrödinger,Expanding Universe (Cambridge University Press, 1956).

  23. I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin,Generalized Functions, Vol. 5 (Academic Press, London, 1966), Chapter V.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Parts of this paper were presented at the International Symposium on Mathematical Physics, Mexico City, January 5–10, 1976.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drechsler, W. Currents in a theory of strong interaction based on a fiber bundle geometry. Found Phys 7, 629–671 (1977). https://doi.org/10.1007/BF00708588

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708588

Keywords

Navigation