Advertisement

Foundations of Physics

, Volume 5, Issue 4, pp 591–605 | Cite as

General quantum mechanical canonical point transformations

  • Norman M. Witriol
Article

Abstract

Problems related to the operator form of the generalized canonical momenta in quantum mechanics are resolved by use of the general quantum mechanical canonical point transformation method. This method can be applied to any general canonical point transformation irrespective of the relationship between the domains of the original and transformed variables. The differential representation of the original canonical momenta pi in the original coordinate space is −i\(\begin{array}{*{20}c} / \\ h \\ \end{array}\) ∂/∂x i and of the transformed canonical momentap i ′ in the transformed coordinate space is −i\(\begin{array}{*{20}c} / \\ h \\ \end{array}\) ∂/∂x i ′. Relationships are derived between the eigenvalues of the original and transformed momenta in either space. The ordering problem for general point transformations is discussed and is shown to be solved. As an example of the generality of the method, it is demonstrated on the point transformation in three dimensions from Cartesian rectilinear to spherical rectilinear coordinates.

Keywords

Quantum Mechanic General Point Transformation Method Operator Form Coordinate Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Merzbacher,Quantum Mechanics (Wiley, New York, 1961), Chap. 15, Sec. 4.Google Scholar
  2. 2.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford Univ. Press, London, 1958), Chap. 4, Sec. 26.Google Scholar
  3. 3.
    D. I. Blokhintsev,Quantum Mechanics (D. Reidel, Dordrecht, Holland, 1964), p. 517.Google Scholar
  4. 4.
    K. Simon,Am. J. Phys. 33, 60 (1965).Google Scholar
  5. 5.
    G. R. Gruber,Found. Phys. 1, 227 (1971).Google Scholar
  6. 6.
    G. R. Gruber,Int. J. Theoret. Phys. 6, 31 (1972).Google Scholar
  7. 7.
    G. R. Gruber,Am. J. Phys. 40, 1537 (1972).Google Scholar
  8. 8.
    G. R. Gruber,Int. J. Theoret. Phys. 7, 253 (1973).Google Scholar
  9. 9.
    R. W. Finkel,Found. Phys. 3, 101 (1973).Google Scholar
  10. 10.
    B. V. Landau,Found. Phys. 3, 499 (1973).Google Scholar
  11. 11.
    G. R. Gruber,Found. Phys. 4, 19 (1974).Google Scholar
  12. 12.
    E. Schrödinger,Ann. d. Physik 79, 745 (1926).Google Scholar
  13. 13.
    W. Pauli,Z. Physik 36, 336 (1926).Google Scholar
  14. 14.
    P. A. M. Dirac,Proc. Roy. Soc. A110, 561 (1926).Google Scholar
  15. 15.
    P. Jordan,Z. Physik 37, 383 (1926).Google Scholar
  16. 16.
    C. Eckart,Phys. Rev. 28, 711 (1926).Google Scholar
  17. 17.
    P. S. Epstein,Proc. Nat. Acad. Sci. 12, 634 (1926).Google Scholar
  18. 18.
    P. Jordan,Z. Physik 38, 513 (1926).Google Scholar
  19. 19.
    P. A. M. Dirac,Proc. Roy. Soc. A113, 621 (1927).Google Scholar
  20. 20.
    B. Podolsky,Phys. Rev. 32, 812 (1928).Google Scholar
  21. 21.
    A. Landé,Principles of Quantum Mechanics (Cambridge Univ. Press, London, 1937), Secs. 50, 51, 58–63.Google Scholar
  22. 22.
    B. S. DeWitt,Phys. Rev. 85, 653 (1952).Google Scholar
  23. 23.
    W. Pauli, “Die Allgemeinen Prinzipien der Wellenmechanik,” inHandbuch der Physik (Springer-Verlag, Berlin, 1956), Band 5, Ziff. 5.Google Scholar
  24. 24.
    B. S. DeWitt,Rev. Mod. Phys. 29, 377 (1957).Google Scholar
  25. 25.
    L. D. Dureau,Am. J. Phys. 33, 895 (1965).Google Scholar
  26. 26.
    G. Rosen,Formulation of Classical and Quantum Dynamical Theory (Academic Press, New York, 1969), Chap. 2.Google Scholar
  27. 27.
    F. M. Eger and E. P. Gross,Ann. Phys. (N. Y.) 24, 63 (1963).Google Scholar
  28. 28.
    F. M. Eger and E. P. Gross,Nuovo Cimento 34, 1225 (1964).Google Scholar
  29. 29.
    F. M. Eger and E. P. Gross,J. Math. Phys. 6, 891 (1965);7, 578 (1966).Google Scholar
  30. 30.
    D. Bohm and B. Salt,Rev. Mod. Phys. 39, 894 (1967).Google Scholar
  31. 31.
    M. J. Cooper,J. Math. Phys. 9, 571 (1968).Google Scholar
  32. 32.
    E. P. Gross, “Transformation Theory,” inMathematical Methods in Solid State and Superfluid Theory, ed. by R. C. Clark and G. H. Derrick (Plenum Press, New York, 1968).Google Scholar
  33. 33.
    E. P. Gross,Ann. Phys. (N. Y.) 52, 383 (1969).Google Scholar
  34. 34.
    N. M. Witriol,J. Math. Phys. 11, 669 (1970).Google Scholar
  35. 35.
    N. M. Witriol,Phys. Rev. A 1, 1775 (1970).Google Scholar
  36. 36.
    N. M. Witriol,J. Math. Phys. 12, 177 (1971);12, 2467 (1971).Google Scholar
  37. 37.
    E. P. Gross,Ann. Phys. (N.Y.) 62, 320 (1971).Google Scholar
  38. 38.
    S. B. Trickey, N. M. Witriol, and G. L. Morley,Solid State Comm. 11, 139 (1972).Google Scholar
  39. 39.
    N. M. Witriol,Int. J. Quant. Chem. VIS, 145 (1972).Google Scholar
  40. 40.
    S. B. Trickey, N. M. Witriol, and G. L. Morley,Phys. Rev. A 7, 1662 (1973).Google Scholar
  41. 41.
    P. O. Löwdin, inProc. Nikko Symposium on Molecular Physics (Maruzen, Tokyo, 1954), p. 116; G. G. Hall,Proc. Phys. Soc. (Lond.) 75, 575 (1960); J. O. Hirschfelder,J. Chem. Phys. 33, 1462 (1960); S. T. Epstein and J. O. Hirschfelder,Phys. Rev. 123, 1495 (1961); J. O. Hirschfelder and C. A. Coulson,J. Chem. Phys. 36, 941 (1961); J. H. Epstein and S. T. Epstein,Am. J. Phys. 30, 266 (1962); P. D. Robinson and J. O. Hirschfelder,Phys. Rev. 129, 1391 (1963); S. T. Epstein and P. D. Robinson,Phys. Rev. 129, 1396 (1963).Google Scholar
  42. 42.
    H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1959), Chap. 8.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Norman M. Witriol
    • 1
  1. 1.Quantum Physics, Physical Sciences DirectorateRedstone Arsenal

Personalised recommendations