Skip to main content
Log in

Genetic population structure and gene flow among deep-sea amphipods,Abyssorchomene spp., from six California Continental Borderland basins

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Studies of geographic population variation needed to estimate gene flow are lacking in deep-sea biology. Using allozyme electrophoresis, I have studied population-level geographic variation among scavenging lysianassoid amphipod populations (Abyssorchomene spp.) inhabiting deep-water basins of the Southern California Continental Borderland. Samples were collected from November 1987 to November 1990, using baited traps, from six basins whose bottom depths ranged from ca. 1000 to 2100 m. Five basins (San Diego Trough, Santa Catalina, San Nicolas, Santa Cruz, Tanner Basins) could be grouped together as “shallow-sill” basins, with physical conditions distinctly different from a single “deepsill” basin (San Clemente Basin). Amphipods tentatively identified asAbyssorchomene sp. 1 collected from the shallow-sill basins were morphologically discriminated from those collected in the San Clemente Basin, which were identified asAbyssorchomene sp. 2. Results from eight enzyme loci revealed significant genetic differentiation [Nei's genetic distance (D)>0.155] of deep-sill basin-dwellingAbyssorchomene sp. 2 vsAbyssorchomene sp. 1 from the shallow-sill basins and low levels of gene flow (migration rate,\(\hat M\) <1). Comparisons of benthic fauna suggest the presence of an abyssal-related assemblage in the deep-sill basin isolated from the northern shallow-sill basins. Genetic distances among the five shallow-sill basin populations ofAbyssorchomene sp. 1 were very low (D < 0.003). Estimates of gene flow among these populations were very high (\(\hat M\) > ≈ 24 to 170) and suggested weak isolation by distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F. W., Leary R. F. (1986). Heterozygosity and fitness in natural populations of animals. In: M. E. Soule (ed.) Conservation biology. Sinauer Associates, Inc., Sunderland, Massachusetts, p. 57–76

    Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. A. Rev. Ecol. Syst. 18: 489–522

    Google Scholar 

  • Barham, E. G., Ayer, N. J., Jr., Botce, R. E. (1967). Macrobenthos of the San Diego Trough: photographic census and observations from bathyscaphe,Trieste. Deep-Sea Res. 14: 773–784

    Google Scholar 

  • Barnard, J. L. (1962). South Atlantic abyssal amphipods collected by R. V.Vema. In: Abyssal Crustacea. Columbia University Press, New York, p. 1–78

    Google Scholar 

  • Barnard, J. L. (1967). Bathyal and abysal gammaridean Amphipoda of Cedros Trench, Baja California. U.S. Nat. Mus. Bull. 260: 1–205

    Google Scholar 

  • Bucklin, A., Wilson, R. R. J., Smith, K. L. J. (1987). Genetic differentiation of seamount and basin populations of the deep-sea amphipodEurythenes gryllus. Deep-Sea Res. 34: 1795–1810

    Google Scholar 

  • David, B. (1983). Isolement geographique de populations benthiques abyssales: lesPourtalesia jeffreysi (Echinoidea, Holasteroida) en Mer de Norvege. Oceanol. Acta 6: 13–20

    Google Scholar 

  • Dickinson, J. J. (1978). Faunal comparisons of the gammarid Amphipoda (Crustacea) in two bathyal basins of the California continental borderland. Mar. Biol. 48: 367–372

    Google Scholar 

  • Doyle, R. W. (1972). Genetic variation inOphiomusium lymani (Echinodermata) populations in the deep sea. Deep-Sea Res. 19: 661–664

    Google Scholar 

  • Emery, K. O. (1954). Source of water in basins off southern California. J. mar. Res. 13: 1–21

    Google Scholar 

  • Emery, K. O. (1960). The sea off southern California. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Farris, J. F. (1981). Distance data in phylogenetic analysis. In: Funk, V. A., Brooks, D. R. (eds.). Advances in cladistics: proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, New York, p. 1–23

    Google Scholar 

  • Fauchald, K., Jones, G. (1979). Variation in community structure of shelf, slope and basin macrofaunal communities of the southern California bight. In: Southern California Outer Continental Shelf Environmental Baeline Study, 1976/1977 (Second Year) Benthic Program, Vol. II. Principal Investigators' Reports, Ser. 2. Science Applications, Inc., La Jolla, California, p. 1–168

    Google Scholar 

  • France, S. C. (1992). Geographic variation among deep-sea populations of scavenging lysianassoid amphipods. Ph. D. dissertation, University of California, San Diego

    Google Scholar 

  • France, S. C. (1993). Geographic variation among three isolated populations of the hadal amphipodHirondellea gigas (Crustacea: Amphipoda: Lysianassoidea). Mar. Ecol Prog. Ser. 92: 277–287

    Google Scholar 

  • France, S. C., Hessler, R. R., Vrijenhoek, R. C. (1992). Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipodVentiella sulfuris. Mar. Biol. 114: 551–559

    Google Scholar 

  • Gage, J. D., Tyler P. A. (1991). Deep-sea biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Hansen, B. (1967). The taxonomy and zoogeography of the deepsea holothurians in their evolutionary aspects. Stud. trop. Oceanogr. Miami 5: 480–501

    Google Scholar 

  • Hansen, B. (1975). Systematics and biology of the deep-sea holothurians. Part 1. Elasipoda. Galathea Rep. 13: 1–262

    Google Scholar 

  • Hartman, O., Barnard, J. L. (1958). The benthic fauna of the deep basins off southerns California. Allan Hancock Pacif. Exped. 22: 1–67

    Google Scholar 

  • Hartman, O., Barnard, J. L. (1960). The benthic fauna of the deep basins off southern California. Allan Hancock Pacif. Exped. 22: 69–297

    Google Scholar 

  • Hebert, P. D. N., Beaton, M. J. (1989). Methodologies for allozyme analysis using cellulose acetate electrophoresis: a practical handbook. Helena Laboratories, Beaumont, Texas

    Google Scholar 

  • Hessler, R. R., Sanders, H. L. (1967). Faunal diversity in the deep sea. Deep-Sea Res. 14: 65–78

    Google Scholar 

  • Ingram, C. L., Hessler, R. R. (1983). Distribution and behavior of scavenging amphipods from the central North Pacific. Deep-Sea Res. 30: 683–706

    Google Scholar 

  • Madsen, F. J. (1961). On the zoogeography and origin of the abyssal fauna in view of the knowledge of the Porcellanasteridae. Galathea Rep. 4: 177–218

    Google Scholar 

  • McDonald, J. H. (1985). Size-related and geographic variation at two enzyme loci inMegalorchestia californiana (Amphipoda: Talitridae). Heredity, Lond. 54: 359–366

    Google Scholar 

  • Murphy, R. W., Sites Jr., J. W., Buth, D. G., Haufler, C. H. (1990). Proteins I: isozyme electrophoresis. In: Hillis, D. M., Moritz, C. (eds.) Molecular systematics. Sinauer Associates, Inc., Sunderland, Massachussetts p. 45–126

    Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. natn. Acad. Sci. U.S.A. 70: 3321–3323

    Google Scholar 

  • Nei, M. (1977).F-statistics and analysis of gene diversity in subdivided populations. Ann. hum. Genet. 41: 225–233

    Google Scholar 

  • Nei, M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590

    Google Scholar 

  • Preziosi, R. F., Fairbairn, D. J. (1992). Genetic population structure and levels of gene flow in the stream dwelling waterstrider,Aquarius (=Gerris) remigis (Hemiptera: Gerridae). Evolution, Lawrence, Kansas 46: 430–444

    Google Scholar 

  • Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, Lawrence, Kansas 43: 223–225

    Google Scholar 

  • Richardson, B. J., Baverstock, P. R., Adams, M. (1986). Allozyme electrophoresis: a handbook for animal systematics and population studies. Academic Press, San Diego

    Google Scholar 

  • Robertson, A., Hill, W. G. (1984). Deviations from Hardy-Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. Genetics, Baltimore, Md. 107: 703–718

    Google Scholar 

  • Rogers, J. S. (1972). Measures of genetic similarity and genetic distance. In: M. R. Wheeler (ed.) Studies in genetics VII. Univ. Texas Publ. 7213, p. 145–153

  • Sainte-Marie, B. (1992). Foraging of scavenging deep-sea lysianassoid amphipods. In: Rowe, G. T., Pariente V. (eds.) Deep-sea food chains and the global carbon cycle. Kluwer Academic Publishers, Netherlands, p. 105–124

    Google Scholar 

  • Shulenberger, E., Hessler, R. R. (1974). Scavenging abyssal benthic amphipods trapped under oligotrophic central north Pacific gyre waters. Mar. Biol. 28: 185–187

    Google Scholar 

  • Shutts, R. L. (1975). Unmanned deep sea free vehicle system. Institute of Marine Resources, Marine Life Research Group, Scripps Institution of Oceanography, La Jolla, California

    Google Scholar 

  • Sibuet, M. (1979). Distribution and diversity of asteroids in Atlantic abyssal basins. Sarsia 64: 85–91

    Google Scholar 

  • Siebenaller, J. F., Somero, G. N. (1989). Biochemical adaptations to the deep sea. CRC critical Rev. aquat. Sciences 1: 1–25

    Google Scholar 

  • Slatkin, M. (1985). Gene flow in natural populations. A. Rev. Ecol. Syst. 16: 393–430

    Google Scholar 

  • Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, N.Y. 236: 787–792

    Google Scholar 

  • Slatkin, M., Barton, N. H. (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution, Lawrence, Kansas 43: 1349–1368

    Google Scholar 

  • Slatkin, M., Voelm, L. (1991).F ST in a hierarchical island model. Genetics, Baltimore, Md. 127: 627–629

    Google Scholar 

  • Smith, C. R., Hamilton, S. C. (1983). Epibenthic megafauna of a bathyal basin off southern California: patterns of abundance, biomass, and dispersion. Deep-Sea Res. 30: 907–928

    Google Scholar 

  • Staub, K. C., Woodruff, D. S., Upatham, E. S., Viyanant, V. (1990). Genetic variation inNeotricula aperta, the intermediate snail host ofSchistosoma mekongi: allozyme differences reveal a group of sibling species. Am. malac. Bull. 7: 93–103

    Google Scholar 

  • Swofford, D. L. (1981). On the utility of the distance Wagner procedure. In: Funk, V. A., Brooks, D. R. (eds) Advances in cladistics: proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, New York, p. 25–43

    Google Scholar 

  • Swofford, D. L., Selander, R. B. (1989). BIOSYS-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics. David L. Swofford, Illinois Natural History Survey

  • Templeton, A. R. (1989). The meaning of species and speciation: a genetic perspective. In: Otte, D., Endler, J. A. (eds.) Speciation and its consequences. Sinauer Associates, Inc., Sunderland, Massachussetts, p. 3–27

    Google Scholar 

  • Thompson, B. E., Jones, G. F. (1987). Benthic macrofaunal assemblages of slope habitats in the southern California borderland. Occ. Pap. Allan Hancock Fdn, (New Ser.) 6: 2–21

    Google Scholar 

  • Waples, R. S. (1986). A multispecies approach to the analysis of gene flow in marine shore fishes. Ph.D. dissertation, University of California, San Diego

    Google Scholar 

  • Wilkinson, L. (1989). SYSTAT: the system for statistics. SYSTAT, Inc., Evanston, Illinois

    Google Scholar 

  • Wilson, G. D. F., Hessler, R. R. (1987). Speciation in the deep sea. A. REv. Ecol. Syst. 18: 185–207

    Google Scholar 

  • Wilson, R. R., Jr., Waples, R. S. (1984). Electrophoretic and biometric variability in the abyssal grenadierCoryphaenoides armatus of the western North Atlantic, eastern South Pacific and eastern North Pacific Oceans. Mar. Biol. 80: 227–237

    Google Scholar 

  • Wright, S. (1978). Evolution and genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Yayanos, A. A. (1981). Reversible inactivation of deep-sea amphipods (Paralicella caperesca) by a decompression from 601 bars to atmospheric pressure. Comp. Biochem. Physiol. 69A: 563–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. P. Grassle

Rights and permissions

Reprints and permissions

About this article

Cite this article

France, S.C. Genetic population structure and gene flow among deep-sea amphipods,Abyssorchomene spp., from six California Continental Borderland basins. Mar. Biol. 118, 67–77 (1994). https://doi.org/10.1007/BF00699220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00699220

Keywords

Navigation