Skip to main content
Log in

Excretion of photosynthale by a benthic diatom

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A method is described for studying the release of soluble organic material during photosynthesis by benthic algae. The method simulates presumed natural conditions in that the excreted matter is rapidly and continuously removed. This also facilitates analysis of the soluble compounds and the study of factors affecting excretion. Axenic cultures ofPhaeodactylum tricornutum (Bohlin) of good photosynthetic activity, as determined by measurement of oxygen output, were exposed as a surface layer to labelled carbon dioxide in a perspex fixation cell. Deep culture experiments also involved rapid separation of excreted solutes. Levels of excretion of 1 to 3% of total fixation were found. Some of the excreted material had been inside the cell for some hours. The proportion of fixed carbon excreted was similar in old and fresh media and was not affected by the presence of buffer. Co-precipitation with iron and copper was successful in extracting the labelled solutes from the filtrates, but the specific activity was too low to permit complete identification. There appeared to be differences between the materials excreted in surface and in deep culture. A discussion of related studies leads to a suggestion that it may be useful to consider the released solutes as falling into two categories; the first a low but constant level of excretion of more complex compounds, and the second a potentially much higher but variable level of excretion of simpler compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aleem, A. A.: The diatom community inhabiting the mud-flats at Whitstable. New Phytol.49, 174–188 (1950).

    Google Scholar 

  • Aleyev, B. S.: Secretion of organic substances by algae into the surrounding medium. Mikrobiologiya3, 506–508 (1934).

    Google Scholar 

  • Allen, M. B.: Excretion of organic compounds byChlamydomonas. Arch. Mikrobiol.24, 163–168 (1956).

    Google Scholar 

  • Antia, N. J., C. D. McAllister, T. R. Parsons, K. Stephens andJ. D. H. Strickland: Further measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr.8, 166–183 (1963).

    Google Scholar 

  • Armstrong, F. A. J. andG. T. Boalch: Volatile organic matter in algal culture media and sea water. Nature, Lond.185, 761–762 (1960).

    Google Scholar 

  • Basham, J. A. andM. Kirk: The effect of oxygen on the reduction of carbon dioxide to glycolic acid and other products during photosynthesis byChorella. Biochem. biophys. Res. Commun.9, 376–380 (1962)

    Google Scholar 

  • Belmont, L. andJ. D. A. Miller: Utilization of glutamine by algae J. exp. Bot.16, 318–324 (1965)

    Google Scholar 

  • Blaauw-Jansen, G.: Chlorophyllide, the probable precursor of a growth inhibitor. Nature, Lond.174, 312–313 (1954).

    Google Scholar 

  • Braarud, T. andB. Føyn: Beiträge zur Kenntnis des Stoffwechsels in Meere. Avh. norske Videns-Akad Oslo (Mat. Naturv. Kl.).14 1–24 (1930).

    Google Scholar 

  • Brafield, A. E.: The oxygen content of interstitial water in sandy shores. J. Anim. Ecol.33, 97–116 (1964).

    Google Scholar 

  • Calvin, M., J. A. Bassham, A. A. Benson, V. H. Lynch, C. Ouellet, L. Schou, W. Stepka andN. E. Tolbert: Carbon dioxide assimilation in plants. Symp. Soc. exp. Biol.5, 284–305 (1951).

    Google Scholar 

  • Chapman, G. andA. C. Rae: Isolation of organic solutes from sea water by co-precipitation. Nature, Lond.214, 627–628 (1967).

    Google Scholar 

  • — andA. G. Taylor: Uptake of organic solutes byNereis virens. Nature, Lond.217, 763–764 (1968).

    Google Scholar 

  • Chipperfield, J. R.: The kinetics of combination of carbon dioxide with the anions of glycine, glycyl-glycine and related amino acids. Proc. R. Soc. (B)164, 401–410 (1966).

    Google Scholar 

  • Collins, R. P. andG. H. Bean: Volatile constituents obtained fromChlamydomonas globosa. I. The carboxyl fraction. Physologia3, 55–59 (1963).

    Google Scholar 

  • Coombs, J. andC. P. Whittingham: The mechanism of inhibition of photosynthesis by high partial pressures of oxygen inChlorella. Proc. R. Soc. (B.)164, 511–520 (1966).

    Google Scholar 

  • Cooper, L. H. N.: Chemistry of the sea. 2. Organic. Chemy Britain1, 150–154 (1965).

    Google Scholar 

  • Craigie, J. S. andJ. McLachlan: Excretion of coloured ultraviolet-absorbing substances by marine algae. Can. J. Bot.42, 23–33 (1964).

    Google Scholar 

  • Droop, M. R.: Requirements for thiamine among some marine and supralittoral Protista. J. mar. biol. Ass. U.K.37, 323–329 (1958).

    Google Scholar 

  • —: Organic acids and bases and the lag phase inNannochloris oculata. J. mar. biol. Ass. U.K.46, 673–678 (1966).

    Google Scholar 

  • Duursma, E. K. andW. Sevenhuysen: Note on chelation and solubility of certain metals in sea water at different pH values. Neth. J. Sea Res.3, 95–106 (1966).

    Google Scholar 

  • Ferguson, J. C.: An autoradiographic study of the utilization of free exogenous amino acids by starfishes. Biol. Bull. mar. biol. Lab., Woods Hole133, 317–329 (1967).

    Google Scholar 

  • Fogg, G. E.: The Extacellular products of algae. Oceanogr. mar. Biol. A. Rev.4, 195–212 (1966).

    Google Scholar 

  • — andG. T. Boalch: Extracellular products in pure cultures of a brown alga. Nature, Lond.181, 789–790 (1958).

    Google Scholar 

  • —,C. Nalewajko andW. D. Watt: Extracellular products of phytoplankton photosynthesis. Proc. R. Soc. (B.)162, 517–534 (1965).

    Google Scholar 

  • — andD. F. Westlake: The importance of Extacellular products of algae in freshwater. Verb. int. Verein. theor. angew. Limnol.12, 219–232 (1965).

    Google Scholar 

  • Gran, H. H.: On the conditions for the production of plankton in the sea. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer.75, 37–46 (1931).

    Google Scholar 

  • Gross, F.: The life history of some marine plankton diatoms. Phil. Trans. R. Soc. (B.)228, 1–47 (1937).

    Google Scholar 

  • Guillard, R. R. L. andP. J. Wangersky: The production of extracellular carbohydrates by some marine flagellates. Limnol. Oceanogr.3, 449–454 (1958).

    Google Scholar 

  • Hallmann, M. andJ. Mager: An endogenously produced substance essential for growth initiation ofPasteurella tularensis. J. Ken. Microbiol.49, 461–468 (1967).

    Google Scholar 

  • Hamilton, R. D. andL. J. Greenfield: The utilisation of free amino acids by marine sediment microbiota. Z. allg. Mikrobiol.7, 335–342 (1967).

    Google Scholar 

  • Hellebust, J. A.: Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr.10, 192–206 (1965).

    Google Scholar 

  • Hoffmann, L. R.: Chemotaxis ofOedogonium sperms. SWest. Nat.5, 111–116 (1960).

    Google Scholar 

  • Hopkins, J. T.: A study of the diatoms of the Ouse estuary Sussex. III. The seasonal variation in the littoral epiphyte flora and the shore plankton. J. mar. biol. Ass. U.K.44, 613–644 (1964).

    Google Scholar 

  • Jørgensen, E. G.: Antibiotic substances from cells and culture solutions of unicellular algae with special reference to some chlorophyll derivatives. Physiologia Pl.15, 530–545 (1962).

    Google Scholar 

  • Kalle, K.: The problem of the Gelbstoff in the sea. Oceanogr. mar. Biol. A. Rev.4, 91–104 (1966).

    Google Scholar 

  • Katayama, T.: Volatile constituents.In: Physiology and biochemistry of the algae, pp 467–473. Ed. byR. A. Lewin. New York: Academic Press 1962.

    Google Scholar 

  • Krogh, A.: Über die Bedeutung yon gelösten organischen Substanzen bei der Ernährung yon Wassertieren. Z. vergl. Physiol.12, 668–681 (1930).

    Google Scholar 

  • —,E. Lange andW. Smith: The organic matter given off by algae. Biochem. J.24, 1666–1667 (1930).

    Google Scholar 

  • Lange, W.: Effect of carbohydrate on the symbiotic growth of planktonic blue-green algae with bacteria. Nature, Lond.215, 1277–1278 (1967).

    Google Scholar 

  • Lewin, J. C. andR. R. L. Guillard: Diatoms. A. Rev. Microbiol.17, 373–414 (1963).

    Google Scholar 

  • Lewin, R. A.: Extracellular polysaccharides of green algae. Can. J. Microbiol.2, 665–672 (1956).

    Google Scholar 

  • Little, C. andB. L. Gupta: Pogonophora; uptake of dissolved nutrients. Nature, Lond.218, 873–874 (1968).

    Google Scholar 

  • Lund, J. W. G.: Primary production and periodicity of plankton algae. Verh. int. Verein. theor. angew. Limnol.15, 37–56 (1964).

    Google Scholar 

  • —: The ecology of the freshwater phytoplankton. Biol. Rev.40, 231–293 (1965).

    Google Scholar 

  • Margalef, R.: Succession in marine populations. Advancing Frontiers. Pl. Sci., New Delhi2, 137–188 (1962).

    Google Scholar 

  • —: Some concepts relative to the organisation of plankton. Oceanogr. mar. Biel. A. Rev.5, 257–289 (1967).

    Google Scholar 

  • Marker, A. F. H.: Extracellular carbohydrate liberation in the flagellatesIsochrysis galbana andPrymnesium parvum. J. mar. biol. Ass. U.K.45, 755–772 (1965).

    Google Scholar 

  • McCully, M. E.: Histological studies on the genusFucus. III. Fine structure and possible functions of the epidermal cells of the vegetative thallus. J. Cell Sci.3, 1–16 (1968).

    Google Scholar 

  • McLachlan, J. andJ. S. Craigie: Algal inhibition by yellow ultraviolet-absorbing substances fromFucus vesiculosis. Can. J. Bot.42, 287–292 (1964).

    Google Scholar 

  • Miller, R. M., C. M. Meyer andH. A. Tanner: Glycolate excretion and uptake byChlorella. Pl. Physiol., Lancaster38, 184–188 (1963).

    Google Scholar 

  • Muscatine, L.: Glycerol excretion by symbiotic algae from corals andTridacna and its control by the host. Science, N.Y.156, 516–519 (1967).

    Google Scholar 

  • Nalewajko, C.: Photosynthesis and excretion in various planktonic algae. Limnol. Oceanogr.11, 1–10 (1966).

    Google Scholar 

  • Nordli, E.: Algal flour extract as a stimulating agent for marine dinofiagellate cultures. Nytt Mag. Bot.5, 13–16 (1957).

    Google Scholar 

  • North, B. B. andG. C. Stephens: Uptake and assimilation of amino acids byPlatymonas. Biol. Bull. mar. biol. Lab., Woods Hole133, 391–400 (1967).

    Google Scholar 

  • Ogata, E.: Photosynthesis inPorphyra tenera and some other marine algae as affected by tris(hydroxymethylaminomethane) in artificial media. Bot. Mag., Tokyo79, 271–282 (1966).

    Google Scholar 

  • Overreck, J. andH. D. Babenzien: Detection of free phosphatase, amylase and saccharase in water in ponds. Naturwissenschaften50, 571–572 (1963).

    Google Scholar 

  • Palmer, J. D. andF. E. Round: Persistent, vertical-migration rhythms in benthic microflora. I. The effect of light and temperature on the rhythmic behaviour ofEuglena obtusa. J. mar. biol. Ass. U.K.45, 567–582 (1965).

    Google Scholar 

  • — and —: Persistent, vertical-migration rhythms in benthic microflora. VI. The tidal and diurnal nature of the rhythm in the diatomHantzschia virgata. Biol. Bull. mar. biol. Lab., Woods Hole132, 44–55 (1967).

    Google Scholar 

  • Plamondon, J. E. andJ. A. Bassham: Glycolic acid labelling during photosynthesis with carbon dioxide —14C and tritiated water. Pl. Physiol., Lancaster41, 1272–1275 (1966).

    Google Scholar 

  • Pratt, R.: Studies onChlorella vulgaris. XI. Relation between surface tension and accumulation of chlorellin. Am. J. Bot.35, 634–637 (1948).

    Google Scholar 

  • —,T. C. Daniels, J. J. Eiler, J. B. Gunnison, W. D. Kummler, J. F. Oneto, H. A. Spoehr, G. J. Hardin, H. W. Miller, J. H. C. Smith andH. H. Strain: Chlorellin, an antibacterial substance fromChlorella. Science, N.Y.99, 351–352 (1944).

    Google Scholar 

  • Pringsheim, E. G.: Über farblose Diatomeen. Arch. blikrobiol.16, 18–27 (1951).

    Google Scholar 

  • Pütter, A.: Die Ernährung der Wassertiere and der Stoffhaushalt der Gewäasser, 172 pp. Jena: Fischer (1909).

    Google Scholar 

  • Riley, G. A., P. J. Wangersky andD. van Hemert: Organic aggregates in tropical and sub-tropical surface waters on the North Atlantic ocean. Limnol. Oceanogr.9, 546–550 (1964).

    Google Scholar 

  • Roughton, F. J. W. andL. Rossi-Bernardi: The carbamate reaction of carbon dioxide with glycylglycine. Proc. R. Soo. (B)164, 381–400 (1966).

    Google Scholar 

  • Royce, A. andC. Bowler: An indicator control device for ethylene oxide sterilisation. J. Pharm. Pharmac. (Supp1.11) 294T-298T (1959).

    Google Scholar 

  • Smayda, T. J.: Succession of phytoplaukton and the ocean as an holocoenotic environment.In: Symposium on marine microbiology, pp 260–274. Ed. byC. H. Oppenheimer. Springfield, Ill.: Thomas 1963.

    Google Scholar 

  • Spoehr, H. A., J. C. Smith, H. H. Strain, H. W. Miller andG. J. Hardin: Fatty acid antibacterials from plants. Publs. Carnegie Instn No. 586, 67 (1949).

  • Stephens, G. C. andR. A. Virkar: Uptake of organic material by aquatic invertebrates. IV. The influence of salinity on the uptake of amino acids by the brittle star,Ophiactis arenosa. Biol. Bull. mar. biol. Lab., Woods Hole131, 172–185 (1966).

    Google Scholar 

  • Strickland, J. D. H.: Significance of the values obtained by primary production measurements.In: Proceedings of the conference on primary productivity measurement, pp 172–183. Ed. byM. S. Doty. Hawaii: University Press 1963.

    Google Scholar 

  • —: Production of organic matter in the primary stages of the marine food chain.In: Chemical oceanography, Vol. 1. pp 477–610. Ed. byJ. P. Riley andG. Skirrow. New York: Academic Press 1965a.

    Google Scholar 

  • —: Phytoplankton and marine primary production. A. Rev. Microbiol.19, 127–162 (1965b).

    Google Scholar 

  • Suda, S.: Chlorellin, with special reference to its physiological significance. Sci. Rep. Tôhoku Univ. (Ser. 4)26, 189–197 (1960).

    Google Scholar 

  • — andS. Iwata: Chlorellin. Kagaku,28, 415–416 (1958).

    Google Scholar 

  • Tolbert, N. E. andL. S. Zill: Excretion of glycolic acid by algae during photosynthesis. J. biol. Chem.222, 895–906 (1956).

    Google Scholar 

  • — and —: Excretion of glycolic acid by Chlorella during photosynthesis.In: Research in photosynthesis, pp 228–231. Ed. byH. Gaffron et al. New York: Interscience 1957.

    Google Scholar 

  • Triffit, J. T.: Binding of calcium and strontium by alginates. Nature, Lond.217, 457–458 (1968).

    Google Scholar 

  • Tsubo, Y.: Effect of the supernatant of illuminated culture on dark mating inChlamydomonas moewusii var.rotunda. Bot. Mag., Tokyo74, 519–523 (1961).

    Google Scholar 

  • Warburg, O. von andG. Krippahl: Glykolsäurebildung inChlorella. Z. Naturf.15 (B), 197–199 (1960).

    Google Scholar 

  • Watt, W. D.: Release of dissolved organic material from the cells of phytoplankton populations. Proc. R. Soo (B)164, 521–551 (1966).

    Google Scholar 

  • Webb, K. L. andR. E. Johannes: Studies of the release of dissolved free amino acids by marine zooplankton. Limnol. Oceanogr.12, 376–382 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated byJ. E. Smith, Plymouth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, G., Rae, A.C. Excretion of photosynthale by a benthic diatom. Mar. Biol. 3, 341–351 (1969). https://doi.org/10.1007/BF00698864

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00698864

Keywords

Navigation