Skip to main content
Log in

Proximity-effect-induced superconductivity at millikelvin temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A systematic study is reported of the proximity effect in superconductivity of thick Cu layers (4≤d n≤105 µm) in contact with Nb or Nb-Ti (46≤D s≤1041 µm) from measurements of the ac susceptibility and of the thermal conductivity. The induced superconducting properties of Cu are studied as a function of temperature (7 mK≤T≤1 K), field (0.4 mG≤H≤ 10 G), and electronic mean free path (0.2≤l≤14 µm). The Meissner screening length in Cu increases faster than the coherence length with decreasing temperature and eventually saturates, making the Cu fully superconducting. In this case, superconductivity can be destroyed sharply at a breakdown fieldH b; the transition atH b is hysteretic. The data are in agreement with numerical solutions of the de Gennes/Ginzburg-Landau theory, as demonstrated by the dependence of the Meissner screening length and of the breakdown field on temperature, field, and electronic mean free path. The data indicate that observation of a reduction in thermal conductivity requires a substantially larger induced pair potential than is necessary even for total field shielding. The concentration of Cooper pairs in Cu in contact to Nb is larger than in Cu in contact to Nb-Ti, even for Nb-Ti/Cu samples with a larger electron mean free path in the Cu part. No measurable superconducting field screening could be induced in the investigated temperature range in Pd (26≤d n≤72 µm) in contact to Nb/Cu or to Nb (D s≈5d n). This is explained by the fact that the coherence length is at least an order of magnitude smaller in Pd than in Cu. Evaporating a layer of Fe on Cu in the Nb/Cu samples results in a strong depression of the proximity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Meissner,Phys. Rev. 117, 672 (1960); P. Hilsch,Z. Phys. 167, 511 (1962); J. J. Hauser, H. C. Theurer, and N. R. Werthamer,Phys. Rev. 136A, 637 (1964).

    Google Scholar 

  2. Orsay Group on Superconductivity, in Quantum Fluids, D. F. Brewer, ed. (North-Holland, Amsterdam, 1966);Phys. Kond. Materie 6, 307 (1967); P. G. de Gennes and J. P. Hurault,Phys. Lett. 17, 181 (1965); G. Deutscher and P. G. de Gennes, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Vol. 2, p. 1005.

    Google Scholar 

  3. Y. Oda and H. Nagano,J. Phys. Soc. Japan 44, 2007 (1978);Solid State Commun. 35, 631 (1980); Y. Oda, G. Fujii, and H. Nagano,Japan. J. Appl. Phys. 21, L37 (1982); Y. Oda, H. Sumiyama, and H. Nagano,Japan. J. Appl. Phys. 22, 464 (1983).

    Google Scholar 

  4. A. Sumiyama, Y. Oda, and H. Nagano,J. Phys. Soc. Japan 53, 2449, (1984); inProceedings 17th International Conference on Low Temperature Physics, U. Eckern, A. Schmid, W. Weber, and H. Wühl, eds. (North-Holland, Amsterdam, 1984), Vol. II, p. 1025.

    Google Scholar 

  5. A. C. Mota, D. Marek, and J. C. Weber,Helv. Phys. Acta 55, 647 (1982); J. C. Weber, A. C. Mota, and D. Marek, inProceedings 17th International Conference on Low Temperature Physics, U. Eckern, A. Schmid, W. Weber, and H. Wühl, eds. (North-Holland, Amsterdam, 1984), Vol. II, p. 1023.

    Google Scholar 

  6. J. C. Weber, Dissertation No. 7502, ETH Zürich (1984).

  7. G. Deutscher and C. Valette, inProceedings 13th International Conference on Low Temperature Physics, K. D. Timmerhaus, W. J. O'Sullivan and E. F. Hammel, eds. (Plenum Press, New York, 1974), Vol.III, p. 603.

    Google Scholar 

  8. S. Nakajima and T. Ikeda,Physica 107B, 705 (1981).

    Google Scholar 

  9. J. P. Hurault, Thesis, Orsay (1968).

  10. J. Bardeen, G. Rickayzen, and L. Tewordt,Phys. Rev. 113, 982 (1959).

    Google Scholar 

  11. K. H. Kuhl, Diploma Thesis, Universität Bayreuth (1985).

  12. B. Schröder, Diploma Thesis, Universität Bayreuth (1986).

  13. Th. Bergmann, Diploma Thesis, Universität Bayreuth (1985).

  14. M. Jutzler, B. Schröder, K. Gloos, and F. Pobell, Z. f. PhysikB64, 115 (1986).

    Google Scholar 

  15. M. Hansen and K. Anderko,Constitution of Binary Alloys (McGraw-Hill, New York, 1958); R. P. Elliott,Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965).

    Google Scholar 

  16. J. J. Hauser, H. C. Theurer, and N. R. Werthamer,Phys. Rev. 136A, 637 (1964).

    Google Scholar 

  17. F. J. Culetto, G. Kieselmann, and D. Rainer, inProceedings 17th International Conference on Low Temperature Physics, U. Eckern, A. Schmid, W. Weber, and H. Wühl, eds. (North-Holland, Amsterdam, 1984), Vol.II, p. 1027.

    Google Scholar 

  18. M. P. Zaitlin,Phys. Rev. B 18, 3298, 3305 (1978).

    Google Scholar 

  19. A. F. Andreev,Zh. Eksp. Teor. Fiz. 19, 1228 (1964).

    Google Scholar 

  20. D. H. Dye, S. A. Campbell, G. W. Crabtree, J. B. Ketterson, N. B. Sandesara, and J. J. Vuillemin,Phys. Rev. B 23, 462 (1981).

    Google Scholar 

  21. L. Dumoulin, P. Nedellec, and P. M. Chaikin,Phys. Rev. Lett. 47, 208 (1981).

    Google Scholar 

  22. B. Chakraborty, W. E. Pickett, and P. B. Allen,Phys. Rev. B 14, 3227 (1976).

    Google Scholar 

  23. N. W. Ashcroft and N. D. Mermin,Solid State Physics (Saunders, Philadelphia, 1976).

    Google Scholar 

  24. J. J. Hauser, H. C. Theurer, and N. R. Werthamer,Phys. Rev. 142, 118 (1966); J. J. Hauser, D. R. Hamann, and G. W. Kammlott,Phys. Rev. B 3, 2211 (1971).

    Google Scholar 

  25. G. J. Nieuwenhuys,Adv. Phys. 24, 515 (1975); R. P. Peters, Ch. Buchal, M. Kubota, R. M. Mueller, and F. Pobell,Phys. Rev. Lett. 53, 1108 (1984).

    Google Scholar 

  26. O. Entin-Wohlmann,Phys. Rev. B 12, 4860 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, T., Kuhl, K.H., Schröder, B. et al. Proximity-effect-induced superconductivity at millikelvin temperatures. J Low Temp Phys 66, 209–237 (1987). https://doi.org/10.1007/BF00681822

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681822

Keywords

Navigation