Skip to main content
Log in

Allocation of organic material and energy to the holdfast, stipe, and fronds inPostelsia palmaeformis (Phaeophyta: Laminariales) on the California coast

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Postelsia palmaeformis were collected from the lower intertidal at Pigeon Point, California, USA, in May 1987, and the proximate composition and allocation of energy to the various body components were determined. The holdfast and stipe have a proximate composition (% dry weight) of ca. 40% ash, 5.3% protein, 1% lipid, 2% soluble carbohydrate, and 55% insoluble carbohydrate. The fronds have a proximate composition of ca. 25% ash, 6.5% protein, 2% lipid, 3% soluble carbohydrate, and 65% insoluble carbohydrate. The energetic level was ca. 12 kJ g-1 dry wt and ca. 19 kJ g-1 ash-free dry wt. The relative proportion of three plant components varied, comprising 26, 39, and 35% wet wt and 20, 42, and 38% kJ for the holdfast, stipe, and fronds, respectively. A plant with a basal stipe diameter of 33 mm contains 114 g wet wt and 266 kJ. The maximal density found in May 1987 was 826 plants, 49 301 g wet wt, and 106 157 kJ m-2.P. palmaeformis differs in these characteristics from another intertidal pheophyte,Durvillaea antarctica, that is found in a high-energy intertidal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Brody, S. (1945). Bioenergetics and growth. Hafner Press, New York.

    Google Scholar 

  • Calow, P. (1984). Economics of ontogeny — adaptational aspects. In: Shorrocks, B. (ed.) Evolutionary ecology. Blackwell Scientific Publications, Oxford, p. 81–104

    Google Scholar 

  • Connell, J. H. (1986). Variation and persistence of rocky shore populations. In: Moore, P. G., Seed, R. (eds.) The ecology of rocky shores. Columbia University Press, New York, p. 57–69

    Google Scholar 

  • Dayton, P. K. (1973). Dispersion, dispersal, and persistence of the annual intertidal alga,Postelsia palmaeformis Ruprecht. Ecology 54: 433–438

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, R. (1956). Colorimetric method for the determination of sugars and related substances. Analyt. Chem. 28: 350–356

    Google Scholar 

  • Freeman, N. K., Lindgren, F. T., Ng, N. C., Nichols, A. V. (1957). Infrared spectra of some lipoproteins and related lipids. J. biol. Chem. 227: 449–464

    Google Scholar 

  • Fritsch, F. E. (1952). The structure and reproduction of algae. Vol. II. Cambridge University Press, Cambridge

    Google Scholar 

  • Gornall, A. C., Bardawill, C. J., David, M. M. (1949) Determination of serum proteins by means of the biuret reaction. J. biol. Chem. 117: 751–766

    Google Scholar 

  • Jackson, G. A., James, D. E., North, W. J. (1985) Morphological relationships among fronds of giant kelpMacrocystis pyrifera off La Jolla, California. Mar. Ecol. Prog. Ser. 26: 261–270

    Google Scholar 

  • Kain (Jones), J. M. (1982). Morphology and growth of the giant kelpMacrocystis pyrifera in New Zealand and California. Mar. Biol. 67: 143–157

    Google Scholar 

  • Lawrence, J. M. (1986). Proximate composition and standing crop ofDurvillaea antarctica (Pheophyta) in the Bay of Morbihan, Kerguelen (South Indian Ocean). Mar. Ecol. Prog. Ser. 33: 1–5

    Google Scholar 

  • Leigh, E. G., Jr., Paine, R. T., Quinn, J. F., Suchanek, T. H. (1987) Wave energy and intertial productivity. Proc. natn. Acad. Sci. U.S.A. 84: 1314–1318

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275

    Google Scholar 

  • Nicholson, N. L. (1970). Field studies on the giant kelpNereocystis. J. Phycol. 6: 177–182

    Google Scholar 

  • Paine, R. T. (1971). The measurement and application of the calorie to ecological problems. A. Rev. Ecol. Syst. 2: 145–164

    Google Scholar 

  • Paine, R. T. (1979) Disaster, catastrophe, and local persistence of the sea palmPostelsia palmaeformis. Science, N. Y. 205: 685–687

    Google Scholar 

  • Paine, R. T., Vadas, R. L. (1969). Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar. Biol. 4: 79–86

    Google Scholar 

  • Ricketts, E. F., Calvin, J. (1968). Between Pacific tides, 3rd ed., revised. Stanford University Press, Stanford

    Google Scholar 

  • Russell, G. (1986). Variation and natural selection in marine macroalgae. Oceanogr. mar. Biol. A. Rev. 24: 309–377

    Google Scholar 

  • Santelices, B., Castilla, J. C., Cancino, J., Schmiede, P. (1980). Comparative ecology ofLessonia nigrescens andDurvillaea antarctica (Phaeophyta) in central Chile. Mar. Biol. 59: 119–132

    Google Scholar 

  • Stephenson, T. A., Stephenson, A. (1972). Life between tidemarks on rocky shores. W. H. Freeman & Co. San Francisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, J.M., McClintock, J.B. Allocation of organic material and energy to the holdfast, stipe, and fronds inPostelsia palmaeformis (Phaeophyta: Laminariales) on the California coast. Mar. Biol. 99, 151–155 (1988). https://doi.org/10.1007/BF00644990

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00644990

Keywords

Navigation