Electron microscopic study of fine particles of beryllium


It is demonstrated that nanometre-sized particles of beryllium may be readily generatedin situ by the electron-beam induced decomposition of BeH2 within a transmission electron microscope. The particles, to a first approximation, are distributed around two well-defined sizes, each size with its own distinct morphology: the first are hexagonal plates (approximately 1.5 μm) and the second are slightly polygonized spheres of dimensions between 1 and 5 nm. The morphological form of these particles is presented and discussed as well as the electron energy loss spectrum and some high-resolution lattice images. The results are compared with those obtained for other metal hydrides.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. J. Herley andW. Jones,Mater. Lett. 1 (1983) 131.

    CAS  Article  Google Scholar 

  2. 2.

    W. Jones, T. G. Sparrow, B. G. Williams andP. J. Herley,ibid. 2 (1984) 377.

    CAS  Article  Google Scholar 

  3. 3.

    P. J. Herley andW. Jones,J. Mater. Sci. Lett. 1 (1982) 163.

    CAS  Article  Google Scholar 

  4. 4.

    P. J. Herley, W. Jones andB. Vigeholm,J. Appl. Phys. 58 (1985) 292.

    CAS  Article  Google Scholar 

  5. 5.

    P. J. Herley andW. Jones,Mater. Sci. Engng A114 (1989) L1.

    CAS  Google Scholar 

  6. 6.

    P. J. Herley, W. Jones andG. R. Millward,J. Mater. Sci. Lett. 8 (1989) 1013.

    CAS  Article  Google Scholar 

  7. 7.

    P. J. Herley, N. P. Fitzsimons andW. Jones, in “Specimen Preparation for Transmission Electron Microscopy of Materials III”, Materials Research Society, Vol. 254, edited by R. Anderson, J. Bravman and B. Tracy (1992) p. 223. Materials Research Society, Pittsburgh, Pennsylvania.

    Google Scholar 

  8. 8.

    P. J. Herley andW. Jones,Z. Phys. Chem. N. F 164 (1989) 1151.

    Article  Google Scholar 

  9. 9.

    Idem, ibid. 147 (1986) 147.

    CAS  Article  Google Scholar 

  10. 10.

    Y. Fukano andK. Nakao,Jpn J. Appl. Phys. 20 (1981) 477.

    CAS  Article  Google Scholar 

  11. 11.

    K. Kimoto andI. Nishida ibid. 6 (1967) 1047.

    CAS  Article  Google Scholar 

  12. 12.

    G. S. Smith, Q. C. Johnson, D. K. Smith, D. E. Cox andA. Zalkin,Solid State Commun. 67 (1988) 491, and references therein.

    CAS  Article  Google Scholar 

  13. 13.

    H. Raether, “Excitation of Plasmons and Interband Transitions by Electrons”, Springer Tracts in Modern Physics, Vol. 88 (Springer-Verlag, Berlin, 1980) p. 50.

    Google Scholar 

  14. 14.

    R. Uyeda, in “Morphology of Crystals”, edited by I. Sunagawa (Terra Scientific, Tokyo, 1987) Part B, Ch. 6.

    Google Scholar 

  15. 15.

    J. Perel, J. F. Mahoney, S. Taylor, Z. Shanfield andC. Levi, in “Rapid Solidified Amorphous and Crystalline Alloys”, edited by B. H. Kear, B. C. Giessen and M. Cohen (North Holland, Amsterdam, 1982) p. 131.

    Google Scholar 

  16. 16.

    P. J. Herley, W. Jones, T. G. Sparrow andB. G. Williams,Mater. Lett. 5 (1987) 333.

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herley, P.J., Jones, W. Electron microscopic study of fine particles of beryllium. J Mater Sci 28, 1874–1878 (1993). https://doi.org/10.1007/BF00595760

Download citation


  • Transmission Electron Microscope
  • Hexagonal
  • Hydride
  • Energy Loss
  • Electron Energy