Chemistry of Natural Compounds

, Volume 18, Issue 3, pp 341–349 | Cite as

Isolation and characterization of an L-amino acid acylase fromAspergillus oryzae

  • M. K. Malinka
  • V. M. Stepanov
  • L. S. Lobareva


A scheme of isolating a highly purified L-amino acylase fromAspergillus oryzae is described which excludes extraction of the enzyme from the preparation “Amilorizin,” fractionation with ethanol, chromatography on DEAE-cellulose, and gel filtration through Sephadex G-200 and Bio-Gel P-300. The enzyme, as purified 1240-fold, has a molecular weight of 118,000, apparently consists of two subunits with a molecular weight of 60,000, is stable in the pH range of 7–10 and has an optimum pH of 8.9 and a pI of 4.0. Its amino acid composition has been determined and its substrate specificity has been studied. The acylase is a metalloenzyme: Co2+` ions in concentrations of 10−4–5·10−5 M increase the rate of hydrolysis of N-acetyl-L-amino acids three- to fourfold. It shows differences in its molecular and functional properties from acylase I obtained from porcine kidney.


Sodium Dodecyl Sulfate Amino Acid Composition Borate Buffer Porcine Kidney Nitr Obenzenediaz Onium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    T. Watanabe, T. Mori, and I. Chibata, Biotech. Bioeng.,21, 477 (1979).CrossRefGoogle Scholar
  2. 2.
    E. N. Makarova, Biol. Zh. Arm.,32, No. 9, 850 (1979).Google Scholar
  3. 3.
    Y. Minematsu, Bull. Chem. Soc. Jpn.,52, No. 6, 1899 (1978).CrossRefGoogle Scholar
  4. 4.
    K. Hirano, I. Karube, and S. Suzuki, J. Ferment. Technol.,55, No. 4, 401 (1977).Google Scholar
  5. 5.
    Y. Kameda, T. Hase, S. Kanatomo, and K. Miyazaki, Chem. Pharm. Bull.,26, No. 9, 2710 (1978).CrossRefGoogle Scholar
  6. 6.
    I. A. Yamskov, M. V. Budanov, L. S. Lobareva, M. K. Malinka, and V. D. Davankov, Biokhimiya,46, 651 (1981).Google Scholar
  7. 7.
    W. Kördel and Fr. Schneider, Z. Naturforsch.,32, 342 (1977).Google Scholar
  8. 8.
    Y. Frey, W. Kördel, and Fr. Schneider, Z. Naturforsch.,32, 759 (1977).Google Scholar
  9. 9.
    W. Kördel and Fr. Schneider, Z. Naturforsch.,32, 337 (1977).Google Scholar
  10. 10.
    V. K. Shvyadas, I. Yu. Galaev, N. A. Galstyan, and I. V. Berezin, Biokhimiya,45, 1361 (1980).Google Scholar
  11. 11.
    E. Moravcsik, Y. Telegdi, H. Tüdös, K. Kömives, and L. Ötvös, Acta Biochim. Biophys. Acad. Sci. Hung.,12, No. 4, 399 (1977).PubMedGoogle Scholar
  12. 12.
    W. Kördel and Fr. Schneider, Z. Physiol. Chem.,356, 915 (1975).CrossRefGoogle Scholar
  13. 13.
    F. Brubs and Ch. Schulze, Biochem. Z.,336, 162 (1962).Google Scholar
  14. 14.
    W. Kördel and Fr. Schneider, Biochim. Biophys. Acta,445, 446 (1976).CrossRefGoogle Scholar
  15. 15.
    K. Waber and M. Osborn, J. Biol. Chem.,224, 4406 (1969).Google Scholar
  16. 16.
    M. W. Hunkapiller and L. E. Hood, Science,207, No. 4430, 523 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • M. K. Malinka
  • V. M. Stepanov
  • L. S. Lobareva

There are no affiliations available

Personalised recommendations