Advertisement

Chemistry of Natural Compounds

, Volume 18, Issue 6, pp 658–671 | Cite as

Study of the structure and stereochemistry of flavonoid O-rhamnosides with the aid of PMR spectroscopy

  • G. G. Zapesochnaya
Article

Abstract

The PMR method has been used in the study of the structure and stereochemistry of a number of flavonoid rhamnosides. The systematic study of the PMR spectra of the native compounds and their TMS ethers and complete acetates has permitted the size of the oxide ring, the conformation of the rhamnose residue, and, in combination with the results of polarimetric analysis, the configuration of the glycosidic bond to be determined. Information on the size of the oxide ring is given by — in addition to, the J2, 3 proton coupling constant — the signals of the protons at C-5 in the spectra of the full acetates. In the diagnostic region of 3.2–4.0 ppm, only the proton H-5 resonates in the rhamnopyranosides, while for the rhamnofuranosides a different structure of the H-4 signal must be expected. It has been shown that all the compounds studied (more than 20 specimens) are α-L-rhamnopyranosides and have the1C4 conformation of the sugar residue. In view of this, the hypothesis has been expressed that the existence of natural flavonoid rhamnosides in the furanoside form is improbable.

Keywords

Kaempferol Isorhamnetin Quercitrin Oxide Ring Paramagnetic Shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. G. Zapesochnaya, Khim. Prir. Soedin., 21 (1979).Google Scholar
  2. 2.
    G. G. Zapesochnaya, E. A. Yarosh, N. V. Svanidze, and G. I. Yarosh, Khim. Prir. Soedin., 252 (1980).Google Scholar
  3. 3.
    V. I. Starovoitova and G. G. Zapesochnaya, Khim. Prir. Soedin., 125 (1980).Google Scholar
  4. 4.
    G. G. Zapesochnaya, T. V. Kyshtymova, A. I. Ban'kovskii, and P. I. Kibal'chich, Khim. Prir. Soedin., 347 (1965).Google Scholar
  5. 5.
    G. G. Zapesochnaya, L. P. Kuptsova, T. V. Kyshtymova, A. I. Ban'kovskii, and T. M. Mel'nikova, Khim. Prir. Soedin., 279 (1967).Google Scholar
  6. 6.
    G. G. Zapesochnaya, A. I. Ban'kovskii, and I. A. Gubanov, Khim. Prir. Soedin., 122 (1969).Google Scholar
  7. 7.
    G. P. Shnyakina and G. G. Zapesochnaya, Khim. Prir. Soedin., 673 (1973).Google Scholar
  8. 8.
    G. G. Zapesochnaya and G. P. Shnyakina, Khim. Prir. Soedin., 720 (1975).Google Scholar
  9. 9.
    G. P. Shnyakina and G. G. Zapesochnaya, Khim. Prir. Soedin., 557 (1973).Google Scholar
  10. 10.
    L. Farkas, B. Vermes, M. Nogradi, and A. Kalman, Phytochemistry,15, 215 (1976).CrossRefGoogle Scholar
  11. 11.
    G. P. Shnyakina and G. G. Zapesochnaya, Khim. Prir. Soedin., 92 (1975).Google Scholar
  12. 12.
    L. P. Smirnova, G. G. Zapesochnaya, A. I. Ban'kovskii, and K. I. Boryaev, Khim. Prir. Soedin., 118 (1973).Google Scholar
  13. 13.
    L. P. Smirnova, G. G. Zapesochnaya, V. N. Sheichenko, and A. I. Ban'kovskii, Khim. Prir. Soedin., 313 (1974).Google Scholar
  14. 14.
    G. G. Zapesochnaya, I. V. Shervashidze, and N. A. Tyukavkina, Khim. Prir. Soedin., 183 (1981).Google Scholar
  15. 15.
    J. F. Stoddart, Stereochemistry of Carbohydrates, Interscience, New York (1971).Google Scholar
  16. 16.
    B. Coxson, in: Methods of Carbohydrate Chemistry, Vol. VI, R. L. Whistler and J. N. BeMiller, eds., Academic Press, New York (1972), pp. 513–519.Google Scholar
  17. 17.
    L. D. Hall, Adv. Carbohydr. Chem.,19, 51 (1964).PubMedGoogle Scholar
  18. 18.
    J. D. Stevens and H. G. Fletcher, J. Org. Chem.,33, 1799 (1968).CrossRefGoogle Scholar
  19. 19.
    E. Westhof, O. Röder, I. Croneiss, and H.-D. Lüdemann, Z. Naturforsch,30c, 131 (1975).Google Scholar
  20. 20.
    B. Helferich, H. Appel, and R. Gootz, Z. Physiol. Chem.,215, 277 (1933).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • G. G. Zapesochnaya

There are no affiliations available

Personalised recommendations