Skip to main content
Log in

The frictional behaviour of LiF single crystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study has been made of the influence of initial surface roughness, renewable and non-renewable surface contaminants, and irradiation hardening on the coefficient of friction for one LiF single crystal (A) sliding on another (B) in {100}A<010>A∥{100}B 〈010〉B orientation at ∼ 295 K. The normal load was ∼ 1 N, the nominal contact pressure ∼ 0.1 MPa, the sliding velocity 0.2 to 0.6 mm sec−1, and the amplitude of the (reciprocate) motion a few millimetres. Any influence of non-renewable contaminants persisted only for cumulative relative displacements ≲ 0.1 m, and that of micrometre-scale initial surface roughness only for a few metres. At steady state in the presence of renewable contaminants the coefficient of friction varied only from a high of ∼ 0.45 in ultra-high vacuum (∼ 7.5 × 10−8 Pa) and “dry” nitrogen-rich air (∼ 105 Pa, relative humidity ≲ 15%) to a low of ∼ 0.38 in “moist” nitrogen-rich air (∼ 105 Pa, relative humidity ∼ 50%). Irradiation hardening had no effect on the coefficient of friction at steady state. The worn surfaces created by steady-state sliding always exhibited a grooved topography partly obscured by more-or-less adherent layers of variously consolidated equiaxed debris particles ∼ 100 nm in size. Owing to the action of image forces, these particles contained no dislocations. It is suggested that the coefficient of friction was determined at steady state by the stress needed to shear these tiny particles past one another as near-rigid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Bowden andD. Tabor, “The Friction and Lubrication of Solids”, Vols I and II (Oxford University Press, Oxford, 1954 and 1964).

    Google Scholar 

  2. E. MacGurdy, “The Notebooks of Leonardo da Vinci” (Cape, London, 1956).

    Google Scholar 

  3. G. Amontons,Mém. Acad. Roy. A (1699) 275.

    Google Scholar 

  4. C. A. Coulomb,Mém. Math. Phys. Acad. Roy. (1785) 161.

  5. J. Leslie, “An Experimental Enquiry Into the Nature and Propagation of Heat” (Mawman, London, 1804).

    Google Scholar 

  6. M. T. Sprackling, “The Plastic Deformation of Simple Ionic Crystals” (Academic Press, London, 1976) p. 71.

    Google Scholar 

  7. A. Kelly andN. H. Macmillan, “Strong Solids”, 3rd Edn (Oxford University Press, Oxford, 1986) pp. 116, 143.

    Google Scholar 

  8. K. L. Kliewer andJ. S. Koehler,Phys. Rev. 140 (1965) A1226.

    Article  Google Scholar 

  9. Idem, ibid. 140 (1965) A1241.

    Article  Google Scholar 

  10. R. M. Latanision andJ. T. Fourie (eds), “Surface Effects in Crystal Plasticity” (Noordhoff, Leyden, The Netherlands, 1977).

    Google Scholar 

  11. R. M. Latanision andJ. R. Pickens (eds), “Atomistics of Fracture” (Plenum Press, New York, 1983).

    Google Scholar 

  12. R. M. Latanision andR. H. Jones (eds), “Chemistry and Physics of Fracture” (Nijhoff, Dordrecht, The Netherlands, 1987).

    Google Scholar 

  13. J. H. Westbrook andP. J. Jorgensen,Trans. Met. Soc. AIME 233 (1965) 425.

    CAS  Google Scholar 

  14. R. E. Hanneman andJ. H. Westbrook,Phil. Mag. 18 (1968) 73.

    Article  CAS  Google Scholar 

  15. D. H. Buckley, “Influence of Surface Active Agents on Friction, Deformation and Fracture of Lithium Fluoride”, Report NASA TN D-4716 (NASA, Washington, D.C., 1968).

    Google Scholar 

  16. Ye. D. Shchukin, V. I. Savenko, L. A. Kochanova andP. A. Rebinder,Dokl. Akad. Nauk. SSSR 200 (1971) 406.

    CAS  Google Scholar 

  17. Idem, ibid. 200 (1971) 1329.

    CAS  Google Scholar 

  18. A. A. Shpunt andO. A. Nabutovskaya,Sov. Phys. Solid State 15 (1973) 192.

    Google Scholar 

  19. N. H. Macmillan, R. D. Huntington andA. R. C. Westwood,Phil. Mag. 28 (1973) 923.

    Article  CAS  Google Scholar 

  20. A. R. C. Westwood, R. D. Huntington andN. H. Macmillan,J. Appl. Phys. 44 (1973) 5194.

    Article  CAS  Google Scholar 

  21. V. I. Savenko, L. A. Kochanova andE. D. Shchukin,Wear 56 (1979) 297.

    Article  CAS  Google Scholar 

  22. F. C. Brown, University of Washington, Seattle, personal communication (1989).

  23. J. Gittus, “Irradiation Effects in Crystalline Solids” (Applied Science, London, 1978) p. 237.

    Google Scholar 

  24. K. Guckelsberger andK. Neumaier,J. Phys. Chem. Solids 36 (1975) 1353.

    Article  CAS  Google Scholar 

  25. W. G. Johnston, in “Progress in Ceramic Science”, Vol. 2, edited by J. E. Burke (Pergamon Press, New York, 1962) p. 1.

    Google Scholar 

  26. K. Sangwal, “Etching of Crystals” (North-Holland, Amsterdam, The Netherlands, 1987) p. 407.

    Google Scholar 

  27. A. Roth, “Vacuum Technology” (North-Holland, Amsterdam, The Netherlands, 1976).

    Google Scholar 

  28. E. A. Schlanger, MS thesis, The Pennsylvania State University (1986).

  29. C. -Y. Huang, MS thesis, The Pennsylvania State University (1986).

  30. R. C. Weast (ed.), “Handbook of Chemistry and Physics”, 56th Edn (Chemical Rubber Co., Cleveland, 1975/6) p. B-107.

    Google Scholar 

  31. J. J. Gilman, in “The Science of Hardness Testing and Its Research Applications”, edited by J. H. Westbrook and H. Conrad (ASM, Metals Park, Ohio, 1973) p. 51.

    Google Scholar 

  32. Idem, J. Appl. Phys. 44 (1973) 982.

    Article  CAS  Google Scholar 

  33. Idem, Acta Metall. 7 (1959) 608.

    Article  CAS  Google Scholar 

  34. D. G. Rickerby, B. N. Pramila Bai andN. H. Macmillan, in “Energy and Ceramics”, edited by P. Vincenzini (Elsevier, Amsterdam, 1980) p. 752.

    Google Scholar 

  35. C. A. Brookes, J. B. O'Neill andB. A. W. Redfern,Proc. Roy. Soc. A322 (1971) 73.

    Article  Google Scholar 

  36. C. A. Brookes, R. P. Burnand andJ. E. Morgan,J. Mater. Sci. 10 (1975) 2171.

    Article  CAS  Google Scholar 

  37. S. G. Roberts,Phil. Mag. A58 (1988) 347.

    Article  Google Scholar 

  38. S. G. Roberts, P. D. Warren andP. B. Hirsch,Mater. Sci. Engng A105/106 (1988) 19.

    Article  Google Scholar 

  39. Z. G. Liu andW. Skrotzki,Phys. Status Solidi (a) 70 (1982) 433.

    Article  CAS  Google Scholar 

  40. J. Grunzweig, I. M. Longman andN. J. Petch,J. Mech. Phys. Solids 2 (1954) 81.

    Article  Google Scholar 

  41. W. Johnson, F. U. Mahtab andJ. B. Haddow,Int. J. Mech. Sci. 6 (1964) 329.

    Article  Google Scholar 

  42. L. A. Davis andR. B. Gordon,J. Appl. Phys. 39 (1968) 3885.

    Article  CAS  Google Scholar 

  43. P. Haasen, L. A. Davis, E. Aladag andR. B. Gordon,Scripta Metall. 4 (1970) 55.

    Article  CAS  Google Scholar 

  44. G. Fontaine andP. Haasen,Phys. Status Solidi 31 (1969) k67.

    Article  CAS  Google Scholar 

  45. F. A. Mohamed andT. G. Langdon,J. Appl. Phys. 45 (1974) 1965.

    Article  CAS  Google Scholar 

  46. P. Haasen,Mater. Sci. Technol. 1 (1985) 1013.

    Article  CAS  Google Scholar 

  47. A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Oxford University Press, Oxford, 1953) p. 54.

    Google Scholar 

  48. R. C. Evans, “An Introduction to Crystal Chemistry”, 2nd Edn (Cambridge University Press, Cambridge, 1964) p. 37.

    Google Scholar 

  49. G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties” (MIT Press, Cambridge, 1971) p. 42.

    Google Scholar 

  50. J. J. Gilman andW. G. Johnston,Solid State Phys. 13 (1962) 147.

    Article  CAS  Google Scholar 

  51. R. J. Stokes,Trans. Met. Soc. AIME 224 (1962) 1227.

    Google Scholar 

  52. K. C. Goretta andJ. L. Routbort,J. Mater. Sci. Lett. 6 (1987) 862.

    Article  CAS  Google Scholar 

  53. A. D. Whapham andM. J. Makin,Phil. Mag. 5 (1960) 237.

    Article  CAS  Google Scholar 

  54. N. P. Scvortzova andG. P. Berezkhova,Cryst. Res. Tech. 21 (1986) 939.

    Article  Google Scholar 

  55. D. M. Marsh,Phil. Mag. 5 (1960) 1197.

    Article  CAS  Google Scholar 

  56. Idem, in “Fracture of Solids”, edited by D. C. Drucker and J. J. Gilman (Wiley, New York, 1963) p. 119.

    Google Scholar 

  57. A. N. Stroh,Adv. Phys. 6 (1957) 418.

    Article  Google Scholar 

  58. P. W. Tasker,Phil. Mag. 39 (1979) 119.

    Article  CAS  Google Scholar 

  59. J. J. Gilman,J. Appl. Phys. 31 (1960) 2208.

    Article  CAS  Google Scholar 

  60. S. J. Burns andW. W. Webb,ibid. 41 (1970) 2086.

    Article  CAS  Google Scholar 

  61. F. C. Frank andW. T. Read,Phys. Rev. 79 (1950) 722.

    Article  CAS  Google Scholar 

  62. K. Kendall,Nature 272 (1978) 710.

    Article  CAS  Google Scholar 

  63. Idem, J. Mater. Sci. 11 (1976) 1267.

    Article  Google Scholar 

  64. Idem, Proc. Roy. Soc. A361 (1978) 245.

    Article  Google Scholar 

  65. J. T. Hagan,J. Mater. Sci. Lett. 16 (1981) 2909.

    Article  CAS  Google Scholar 

  66. D. A. Rigney, L. H. Chen, M. G. S. Naylor andA. R. Rosenfield,Wear 100 (1984) 195.

    Article  CAS  Google Scholar 

  67. E. Breval, J. Breznak andN. H. Macmillan,J. Mater. Sci. 21 (1986) 931.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlanger, E.A., Huang, C.Y. & Macmillan, N.H. The frictional behaviour of LiF single crystals. J Mater Sci 26, 925–939 (1991). https://doi.org/10.1007/BF00576769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576769

Keywords

Navigation