Skip to main content
Log in

In situ straining: crack development in thin foils of Ni3Al

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Foils of stoichiometric Ni3Al were deformedin situ in a transmission electron microscope. Under plane stress conditions the crack propagated along slip planes, i.e. along {1 1 1} planes. This is in contrast to the intergranular fracture mode of bulk material. In the direction of the crack path, directly in front of the crack tip (but in the plastic zone), inverse dislocation pileups developed during straining. These dislocations are screw dislocations with Burgers vectorsb=a〈110〉 andb=a/2〈110〉, respectively. Owing to their extremely low Peierls stresses, these dislocations are highly mobile on {1 1 1} planes. Because the slip plane of these screw dislocations is coplanar to the crack plane, the plastic part of the crack development corresponds to shear cracking of the mode III type. Calculation of the local stress intensity factor,k IC, confirmed that cleavage fracture occurs in mode I deformation, which is typical of the crack characteristics of Ni3Al foils. Crack behaviour of Ni3Al is similar to that of simple b c c metals because of the comparable relations of thek values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Izumi,Trans. JIM 19 (1978) 203.

    Article  Google Scholar 

  2. C. L. White andD. F. Stein,Metall. Trans. 9A (1978) 13.

    Article  CAS  Google Scholar 

  3. K. Aoki andO. Izumi,Nippon Kinzoku Gakkaishi 43 (1979) 1190.

    CAS  Google Scholar 

  4. C. C. Koch, J. A. Horton, C. T. Liu, O. B. Cavin andJ. O. Scarborough, in “Proceedings of the 3rd International Conference on Rapid Solidification”, edited by R. Mehrabian (NBS Gaithersburg, Maryland, 1982) pp. 264–9.

    Google Scholar 

  5. C. T. Liu, C. L. White, C. C. Koch andE. H. Lee, in “Proceedings of the Symposium on High Temperature Materials Chemistry II”, edited by Z. S. Munir and D. Cubricciotti (The Electrochemical Society, 1983) pp. 32–41.

  6. E. M. Schulson, D. L. Davidson andD. Viens,Metall Trans. 14A (1983) 1523.

    Article  CAS  Google Scholar 

  7. A. I. Taub, S. C. Huang andK. M. Chang,ibid. 15A (1984) 399.

    Article  CAS  Google Scholar 

  8. C. T. Liu, C. L. White andJ. A. Horton,Acta Metall. 33 (1985) 213.

    Article  CAS  Google Scholar 

  9. T. Ogura, S. Hanada, T. Mazumoto andO. Izumi,Metall. Trans. 16A (1985) 441.

    Article  CAS  Google Scholar 

  10. S. P. Chen, A. F. Voter andD. J. Srolovitz,Scripta Metall. 20 (1986) 1389.

    Article  CAS  Google Scholar 

  11. S. M. Foiles, in “High Temperature Ordered Intermetallic Alloys II”, edited by N. S. Stoloff, C. C. Koch, C. T. Liu and O. Izumi, Materials Research Society Proceedings, Vol. 81 (MRS, Pittsburg, PA, 1987) p. 51.

    Google Scholar 

  12. J. E. Hack, D. J. Srolovitz andS. P. Chen,Scripta Metall. 20 (1986) 1699.

    Article  CAS  Google Scholar 

  13. C. T. Liu andJ. O. Stiegler,Science 22 (1984) 636.

    Article  Google Scholar 

  14. N. S. Stoloff andR. G. Davis, “The Mechanical Properties of Ordered Alloys”, in “Progress in Materials Science”, Vol. 13, edited by B. Colmers and W. Hume-Rothery (1966).

  15. S. Hanada, M. S. Kim, S. Watanabe andO. Izumi,Scripta Metall. 21 (1987) 277.

    Article  CAS  Google Scholar 

  16. I. Baker, E. M. Schulson andJ. A. Horton,Acta Metall. 35 (1987) 1533.

    Article  CAS  Google Scholar 

  17. G. M. Bond, I. M. Robertson andH. K. Birnbaum,J. Mater. Res. 2 (1987) 436.

    Article  CAS  Google Scholar 

  18. R. Maurer andU. Salzberger,Metallography, in press.

  19. A. K. Kuru Villa andN. S. Stoloff,Scripta Metall. 19 (1985) 84.

    Google Scholar 

  20. B. H. Kear andM. F. Hornbecher,Trans. ASM 59 (1966) 155.

    CAS  Google Scholar 

  21. P. H. Thornton, R. G. Davies andT. L. Johston,Metall. Trans. 1 (1970) 207.

    CAS  Google Scholar 

  22. S. Takuchi andE. Kuramoto,Acta Metall. 21 (1973) 415.

    Article  Google Scholar 

  23. A. E. Staton-Bevan andR. D. Rawlings,Phys. Status Solidi (a) 29 (1975) 613.

    Article  CAS  Google Scholar 

  24. Idem., Phil. Mag. 32 (1975) 787.

    Article  CAS  Google Scholar 

  25. I. Baker andE. M. Schulson,Phys. Status Solidi (a) 89 (1985) 163.

    Article  CAS  Google Scholar 

  26. A. Baldan,ibid. 75 (1983) 411.

    Article  Google Scholar 

  27. D. P. Pope andS. S. Ezz,Int. Metals Rev. 29 (1984) 136.

    CAS  Google Scholar 

  28. J. Douin, P. Veyssière andP. Beauchamp,Phil. Mag. A 54 (1986) 375.

    Article  CAS  Google Scholar 

  29. M. Yamaguchi, V. Paidar, D. P. Pope andV. Vitek,ibid. 45 (1982) 867.

    Article  CAS  Google Scholar 

  30. V. Paidar, M. Yamaguchi, D. P. Pope andV. Vitek,ibid. 45 (1982) 883.

    Article  CAS  Google Scholar 

  31. S. M. Ohr,Mater. Sci. Engng 72 (1985) 1.

    Article  CAS  Google Scholar 

  32. S. M. Ohr andJ. Narayan,Phil. Mag. 41 (1980) 81.

    Article  CAS  Google Scholar 

  33. S. Kobayashi andS. M. Ohr,Scripta Metall. 15 (1981) 343.

    Article  CAS  Google Scholar 

  34. Idem., J. Mater. Sci. 19 (1984) 2273.

    Article  CAS  Google Scholar 

  35. S. M. Foiles andM. S. Daw,J. Mater. Res. 2 (1987) 5.

    Article  CAS  Google Scholar 

  36. F. X. Kayser andC. Stassis,Phys. Status Solidi (a) 64 (1981) 335.

    Article  CAS  Google Scholar 

  37. S. M. Copley andB. H. Kear,Trans. AIME 239 (1967) 977.

    CAS  Google Scholar 

  38. U. Inman andH. Tipler,Metall. Rev. 8 (1963) 105.

    Article  CAS  Google Scholar 

  39. P. S. Venkatesan andD. N. Beshers,J. Appl. Phys. 41 (1970) 42.

    Article  CAS  Google Scholar 

  40. J. R. Rice andR. Thomson,Phil. Mag. 29 (1974) 73.

    Article  CAS  Google Scholar 

  41. P. Coulomb,J. Microsc. Spectrosc. Electron. 3 (1978) 295.

    CAS  Google Scholar 

  42. F. Prinz, H. O. K. Kirchner andG. Schoeck,Phil. Mag. 38 (1978) 321.

    Article  CAS  Google Scholar 

  43. B. R. Lawn andT. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, 1975).

  44. J. F. Knott, “Fundamentals of Fracture Mechanics” (Wiley, New York, 1973).

    Google Scholar 

  45. M. H. Yoo andA. H. King,J. Mater. Res. 3 (1988) 848.

    Article  CAS  Google Scholar 

  46. Idem., “Symposium Proceedings on Interface Science and Engineering”, ASM World Materials Congress (27–30 September 1988), Chicago, in press.

  47. E. Smith andG. T. Barnby,J. Metall. Sci. 1 (1967) 56.

    Article  CAS  Google Scholar 

  48. A. Ball andR. E. Smallman,Acta Metall. 14 (1966) 1517.

    Article  CAS  Google Scholar 

  49. M. Rudy andG. Sauthoff,Mater. Sci. Engng 81 (1986) 525.

    Article  CAS  Google Scholar 

  50. F. Laves,Naturwiss. 39 (1952) 546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, R. In situ straining: crack development in thin foils of Ni3Al. J Mater Sci 27, 6279–6290 (1992). https://doi.org/10.1007/BF00576273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576273

Keywords

Navigation