Skip to main content
Log in

Thermal shock of quartz lascas

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a pre-treatment to grinding, quartz lascas (crushed pieces) were thermally shocked into room-temperature water by quenching from temperatures between 50 and 800 °C. Comminuted particles exhibited two distinctive geometries, granular forT q(quench) <T c (573 °C) and needle-like whenT q>T c. The needle-like shapes become thinner and longer with increasing temperature aboveT c. The differences in shape are believed to result from the differences in the crack generation patterns which are governed by the thermoelastic properties in the α-phase and β-phase of the quartz during the thermal shock process. Crack densities induced by the thermal shock were measured as a function ofT q. For the temperature range of ∼200 °C<T q<T c andT c<T q<∼800 °C, the resulting crack densities were determined to be governed by the rate of crack nucleation, which is characterized by an Arrhenius-type equation. The activation energies associated with the crack nucleation rates for the two regions were determined to be 14 and 39 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gross andS. R. Zimmerley,Trans. AIME 87 (1930) 7.

    Google Scholar 

  2. Idem, ibid. 87 (1930) 27.

    Google Scholar 

  3. Idem, ibid. 87 (1930) 35.

    Google Scholar 

  4. J. W. Axelson andE. L. Piret,Ind. Engng Chem. 42 (1950) 665.

    Article  CAS  Google Scholar 

  5. J. W. Axelson, J. T. Adons, J. F. Johnson, J. N. S. Kwong andE. L. Piret,Trans. AIME 190 (1951) 1061.

    Google Scholar 

  6. A. M. Gaudin andT. P. Meloy,ibid. 223 (1962) 40.

    CAS  Google Scholar 

  7. Idem. ibid. 223 (1962) 43.

    CAS  Google Scholar 

  8. D. F. Kelsall, K. J. Reid andC. J. Restarick,Powder Technol. 1 (1967/68) 291.

    Article  Google Scholar 

  9. D. F. Kelsall, K. J. Reid andC. J. Restarick,ibid. 2 (1968/69) 162.

    Article  Google Scholar 

  10. Idem, ibid. 3 (1969/70) 170.

    Article  Google Scholar 

  11. D. F. Kelsall, P. S. B. Stewart andK. R. Weller,ibid. 1 (1973) 293.

    Article  Google Scholar 

  12. Y. Kanda, S. Sano andS. Yashima,ibid. 48 (1986) 263.

    Article  CAS  Google Scholar 

  13. S. Yashima, Y. Kanda andS. Sano,ibid. 51 (1987) 277.

    Article  CAS  Google Scholar 

  14. A. J. Lynch, “Mineral Crushing and Grinding Circuits” (Elsevier Scientific, Amsterdam, 1977).

    Google Scholar 

  15. W. D. Kingery,J. Amer. Ceram. Soc. 38 (1955) 3.

    Article  Google Scholar 

  16. W. B. Crandall andJ. Ging,ibid. 38 (1955) 44.

    Article  Google Scholar 

  17. D. P. H. Hasselman andW. B. Crandall,ibid. 46 (1963) 434.

    Article  CAS  Google Scholar 

  18. M. Iwasa andR. C. Bradt,Mater. Res. Bull. 22 (1987) 1241.

    Article  Google Scholar 

  19. R. W. Davidge andG. Tappin,Trans. Br. Ceram. Soc. 66 (1967) 405.

    CAS  Google Scholar 

  20. M. Ashizuka, T. E. Easler andR. C. Bradt,J. Amer. Ceram. Soc. 66 (1983) 542.

    Article  Google Scholar 

  21. M. Iwasa andR. C. Bradt,J. Soc. Mater. Sci. Jpn 30 (1981) 1001 (in Japanese).

    Article  CAS  Google Scholar 

  22. R. W. Davidge, “Mechanical Behaviour of Ceramics” (Cambridge University Press, London, 1979) p. 139.

    Google Scholar 

  23. W. G. Cady, “Piezoelectricity” (McGraw-Hill, New York, 1946) p. 155.

    Google Scholar 

  24. B. Jaffe, W. R. Cook andH. Jaffe, “Piezoelectric Ceramics” (Academic, New York, 1971) p. 29.

    Google Scholar 

  25. W. M. Bruner,J. Geophys. Res. 89 (1984) 4167.

    Article  CAS  Google Scholar 

  26. E. W. Kammer, T. E. Pardue andH. F. Frissel,J. Appl. Phys. 19 (1948) 265.

    Article  CAS  Google Scholar 

  27. J. F. Nye, “Physical Properties of Crystals” (Oxford University Press, London, 1957) p. 145.

    Google Scholar 

  28. A. H. Jay,Proc. Roy. Soc. (London) A142 (1933) 237.

    Article  CAS  Google Scholar 

  29. K. Kihara,Eur. J. Mineral. 2 (1990) 63.

    Article  CAS  Google Scholar 

  30. C. Frondel, “Silica Minerals, The System of Mineralogy”, Vol. 3 (Wiley, New York, 1962) p. 107, 120.

    Google Scholar 

  31. E. S. Machlin andA. S. Nowick,Trans. AIME 172 (1947) 386.

    Google Scholar 

  32. T. Yokobori,J. Phys. Soc. Jpn 6 (1951) 78.

    Article  Google Scholar 

  33. D. P. H. Hasselman, R. Badaliance, K. R. McKinney andC. H. Kim,J. Mater. Sci. 11 (1976) 458.

    Article  Google Scholar 

  34. J. P. Singh, K. Niihara andD. P. H. Hasselman,ibid. 16 (1981) 2789.

    Article  CAS  Google Scholar 

  35. B. K. Atkinson,J. Geophys. Res. 89 (1989) 4077.

    Article  Google Scholar 

  36. S. M. Wiederhorn andL. H. Bolz,J. Amer. Ceram. Soc. 53 (1970) 543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasaki, H., Torikai, D. Thermal shock of quartz lascas. J Mater Sci 28, 5223–5228 (1993). https://doi.org/10.1007/BF00570068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570068

Keywords

Navigation