Thermoluminescence dosimetry in the μGy range of neodymium-doped tellurite-phosphate glass

Abstract

Thermoluminescence (TL) of tellurite-phosphate glass of the composition of (TeO20.81-P2O50.19) doped with different concentrations of Nd2O3 was prepared. The optimum concentration of Nd2O3 was experimentally determined as 10−3 wt% Nd2O3 in this glass. TL showed a single, isolated glow curve which peaked at approximately 498–513 K (depending on the Nd concentration). This peak is very suitable for radiation dosimetry, and obeys second-order kinetics. The TL response against the irradiation dose was found to be linear in the low-dose region (11.2–224.2 μGy), indicating the high sensitivity of our glass samples to low-dose γ rays. Finally, the trap depth was also calculated, using methods concerning the second-order kinetics.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W. R. Hendee, G. S. Ibott andD. G. Gilbert,Int. J. Appl. Radiat. Isot. 19 (1968) 431.

    CAS  Article  Google Scholar 

  2. 2.

    S. W. S. McKeever, “Thermoluminescence in Solids” (Cambridge University Press, Cambridge, 1985) chapter 6.

    Book  Google Scholar 

  3. 3.

    N. Suntharalingam andJ. R. Cameron,Phys. Med. Biol. 14 (1969) 397.

    CAS  Article  Google Scholar 

  4. 4.

    T. Nakajima, in Proceedings of the 3rd International Conference on Luminescence Dosimetry (Danish Atomic Energy Commission, Riso, Denmark, 1971) p. 466.

    Google Scholar 

  5. 5.

    C. M. Sunta, A. C. Mazzaro, G. M. Sordi andS. Watanabe,Health Phys. 30 (1976) 309.

    CAS  Google Scholar 

  6. 6.

    D. T. Bartlett andA. A. Edwards,Phys. Med. Biol. 24 (1979) 1276.

    CAS  Article  Google Scholar 

  7. 7.

    T. Nakajima,J. Appl. Phys. 53 (1982) 7.

    Article  Google Scholar 

  8. 8.

    W. Binder, S. Disterhift andJ. R. Cameron, in Proceedings of the 2nd International Conference on Luminescence Dosimetry, U. S. A. E. G. CONF-680920 (NTIS, Springfield, Virginia, 1968) p. 43.

    Google Scholar 

  9. 9.

    D. R. Sukis,Trans. Nucl. Sci. NS 18 (1971) 185.

    CAS  Article  Google Scholar 

  10. 10.

    B. Burgkhardt, E. Piesch andD. Singh,Nucl. Inst. Methods 148 (1978) 613.

    CAS  Article  Google Scholar 

  11. 11.

    C. Petridou, C. Christodoulides andS. Charalambous,Nucl. Inst. Methods 150 (1978) 247.

    CAS  Article  Google Scholar 

  12. 12.

    F. Hasan, S. Charalambous,J. Phys. C 16 (1983) 5921.

    CAS  Article  Google Scholar 

  13. 13.

    G. E. Rindone, “Luminescence of Inorganic Solids”, edited by P. Goldberg (Academic, New York, 1966) p. 419.

    Google Scholar 

  14. 14.

    G. O. Karapetyan,Izv. Akad Nauk SSSR Ser. Fiz. 27 (1963) 779.

    Google Scholar 

  15. 15.

    R. F. Laitano andM. Martinelli,Phys. Status Solidi (a) 11 (1972) 343.

    CAS  Article  Google Scholar 

  16. 16.

    R. Nasipuri, H. D. Banerjee andA. Paul,J. Mater. Sci. 15 (1980) 557.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Fukuda, T. Okuno andN. Takeuchi,Radiat. Protect. Dosimetry (1984) 309.

  18. 18.

    Q. Changhong, G. Fuxi andA. Xilin,J. Non-Cryst. Solids 80 (1986) 440.

    Article  Google Scholar 

  19. 19.

    Idem, Luminescence and Display Devices,3 (1983) 48.

    Google Scholar 

  20. 20.

    Q. Changhong andG. Fuxi,Chinese J. Lasers 10 (1984).

  21. 21.

    K. S. V. Nambi, V. N. Bapat andA. K. Ganguly,J. Phys. C 7 (1974) 4403.

    CAS  Article  Google Scholar 

  22. 22.

    R. Huzimura, K. Asaki andM. N. Takenaga,Nucl. Instr. Methods 175 (1980) 8.

    CAS  Article  Google Scholar 

  23. 23.

    R. J. Matthews andJ. G. Stoebe,J. Phys. C 15 (1982) 6271.

    CAS  Article  Google Scholar 

  24. 24.

    A. Abdel-Kader, A. A. Higazy, M. M. Elkholy andR. M. El-Bahnasawy,J. Mater. Sci. 26 (1991) 4298.

    CAS  Article  Google Scholar 

  25. 25.

    A. Abdel-Kader, A. A. Higazy andM. M. Elkholy,J. Mater. Sci. Mater. Elec. 2 (1991) 157.

    CAS  Article  Google Scholar 

  26. 26.

    M. Mangia, E. Oliveri andO. Fiorella, in Proceedings of the 5th International Conference on Luminescent Dosimetry, Sao Paulo, Brazil (Physikalisches Institute, Giessen, 1977) p. 29.

    Google Scholar 

  27. 27.

    Z. Spurny andJ. Novotny, in Proceedings of the 3rd International Conference on Luminescent Dosimetry (Danish Atomic Energy Commission, Riso, Denmark, 1971) p. 132.

    Google Scholar 

  28. 28.

    L. I. Grossweiner,J. Appl. Phys. 24 (1953) 130.

    Article  Google Scholar 

  29. 29.

    C. B. Lushchik,sov. Phys. JETP 3 (1956) 390.

    Google Scholar 

  30. 30.

    A. Halperin andA. A. Braner,Phys. Rev. 117 (1960) 408.

    CAS  Article  Google Scholar 

  31. 31.

    R. Chen,J. Appl. Phys. 40 (1969) 570.

    CAS  Article  Google Scholar 

  32. 32.

    Idem, J. Electrochem. Soc. 116 (1969) 116.

    Article  Google Scholar 

  33. 33.

    P. S. Mazumdar, S. J. Singh andR. K. Gartia,J. Appl. Phys. 21 (1988) 815.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abdel-Kader, A., Higazy, A.A., Elkholy, M.M. et al. Thermoluminescence dosimetry in the μGy range of neodymium-doped tellurite-phosphate glass. J Mater Sci 28, 5133–5137 (1993). https://doi.org/10.1007/BF00570052

Download citation

Keywords

  • Radiation
  • Polymer
  • Irradiation Dose
  • Optimum Concentration
  • Glass Sample