Skip to main content
Log in

Synthesis of heterocyclic systems on the basis of intramolecular nucleophilic substitution of a nitro group (review)

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

Literature data on reactions involving intramolecular nucleophilic substitution of nitro groups that lead to new five-, six-, and seven-membered heterorings in various di-, tri-, and polycyclic systems are systematized and correlated. The effect of the conformational structures of the reacting molecules and dipolar aprotic solvents on the reaction and the yields of cyclization products is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. R. Elderfield, Heterocyclic Compounds, Vol. 6, Wiley (1957).

  2. W. L. Mosby, Heterocyclic Systems with Bridgehead Nitrogen Atoms, Vol. 2, Interscience, London (1961), p. 808.

    Google Scholar 

  3. K. H. Wünsch and A. J. Boulton, Adv. Heterocycl. Chem.,8, 277 (1967).

    Google Scholar 

  4. V. N. Drozd, Zh. Vses. Khim. Ova.,21, 266 (1976).

    Google Scholar 

  5. J. R. Beck, Tetrahedron,34, 2057 (1978).

    Google Scholar 

  6. C. O. Okafor, Internat. J. Sulfur Chem., B,6, 345 (1971).

    Google Scholar 

  7. C. O. Okafor, Internat. J. Sulfur Chem., B,6, 237 (1971).

    Google Scholar 

  8. V. P. Novikov, M. V. Popik, L. V. Vilkov, G. I. Migachev, and K. M. Dyumaev, J. Mol. Struct.,53, 211 (1979).

    Google Scholar 

  9. G. I. Migachev and G. N. Rodionova, Zh. Vses. Khim. Ova.,25, 237 (1980).

    Google Scholar 

  10. N. S. Dokunikhin, G. N. Rodionova, and G. I. Migachev, Zh. Fiz. Khim.,51, 279 (1977).

    Google Scholar 

  11. C. O. Okafor, J. Heterocycl. Chem.,13, 107 (1976).

    Google Scholar 

  12. H. Reichardt, Solvents in Organic Chemistry [Russian translation], Khimiya, Leningrad (1973), p. 78.

    Google Scholar 

  13. T. W. M. Spence and G. Tennant, J. Chem. Soc., Perkin Trans. I, No. 6, 835 (1972).

    Google Scholar 

  14. D. W. Bayne, G. Tennant, and T. W. M. Spence, J. Chem. Soc., Perkin Trans. I, No. 6, 849 (1972).

    Google Scholar 

  15. H. M. Wolff and K. Hartke, Tetrahedron Lett., No. 39, 3453 (1977).

    Google Scholar 

  16. V. Meyer, Chem. Ber.,22, 3 (1889).

    Google Scholar 

  17. K. Schimmelschmidt and H. Hoffmann, Liebigs, Ann.,667, 157 (1964).

    Google Scholar 

  18. V. I. Ivanskii, The Chemistry of Heterocyclic Compounds [in Russian], Vysshaya Shkola, Moscow (1978), p. 174.

    Google Scholar 

  19. V. Veccheitti, E. Dradi, and F. Lauria, J. Chem. Soc., C, No. 14, 2554 (1971).

    Google Scholar 

  20. R. K. Sehgal and K. C. Agrawal, J. Heterocycl. Chem.,16, 1499 (1979).

    Google Scholar 

  21. K. C. Agrawal, K. B. Bears, R. K. Sehgal, J. N. Brown, P. E. Rist, and W. D. Rupp, J. Med. Chem.,22, 583 (1979).

    Google Scholar 

  22. T. P. Kofman, M. S. Pevzner, E. N. Kibasova, L. F. Suchchenko, and T. L. Uspenskaya, in: News in the Chemistry of Nitrogen-Containing Heterocycles [in Russian], Vol. 1, Zinatne, Riga (1979), p. 120.

    Google Scholar 

  23. T. P. Kofman, N. Yu. Medvedeva, T. L. Uspenskaya, and M. S. Pevzner, Khim. Geterotsikl. Soedin., No. 9, 1271 (1977).

    Google Scholar 

  24. T. P. Kofman, V. I. Manuilova, M. S. Pevzner, and T. N. Timofeeva, Khim. Geterosikl. Soedin., No. 5, 705 (1975).

    Google Scholar 

  25. T. P. Kofman, I. V. Vasil'eva, and M. S. Pevzner, Khim. Geterotsikl. Soedin., No. 10, 1407 (1977).

    Google Scholar 

  26. L. B. Piotrovskii, Khim. Geterotsikl. Soedin., No. 3, 417 (1980).

    Google Scholar 

  27. W. Borsche, Chem. Ber.,42, 1310 (1909).

    Google Scholar 

  28. W. Borsche, Liebigs Ann.,390, 1 (1912).

    Google Scholar 

  29. G. Bishop and O. L. Brady, J. Chem. Soc.,128, 810 (1926).

    Google Scholar 

  30. S. Reich and V. Nicolaeva, Bull. Soc. Chim. Fr.,25, 192 (1919).

    Google Scholar 

  31. D. S. Kemp, D. D. Cox, and K. G. Paul, J. Am. Chem. Soc.,97, 7312 (1975).

    Google Scholar 

  32. A. Kövendi and M. Kirez, Chem. Ber.,97, 1902 (1964).

    Google Scholar 

  33. M. Muraoka, T. Yamamoto, S. Yamayuchi, F. Tonosaki, T. Takeshima, and N. Fukada, J. Chem. Soc., Perkin Trans. I, No. 11, 1273 (1977).

    Google Scholar 

  34. T. Takeshima, T. Miyauchi, N. Fukada, S. Koshizawa, and M. Muraoka, J. Chem. Soc., Perkin Trans. I, No. 10, 1009 (1973).

    Google Scholar 

  35. T. Takeshima, N. Fukada, E. Okabe, F. Mineshima, and M. Muraoka, J. Chem. Soc., Perkin Trans. I, No. 13, 1277 (1975).

    Google Scholar 

  36. K. Rasheed and J. D. Warkentin, J. Org. Chem.,42 1265 (1977).

    Google Scholar 

  37. A. A. Santison and G. Tennant, Chem. Commun., No. 39, 3453 (1974).

    Google Scholar 

  38. V. N. Drozd, V. N. Knyazev, and V. M. Minov, Zh. Org. Khim.,13, 396 (1977).

    Google Scholar 

  39. V. N. Knyazev, V. N. Drozd, and V. M. Minov, Tetrahedron Lett., No. 52, 4825 (1976).

    Google Scholar 

  40. V. N. Knyazev, V. N. Drozd, V. M. Minov, and N. P. Akimova, Zh. Org. Khim.,13, 1255 (1977).

    Google Scholar 

  41. V. N. Drozd, V. N. Knyazev, and A. A. Klimov, Zh. Org. Khim.,10, 826 (1974).

    Google Scholar 

  42. A. Werner and T. Herberger, Chem. Ber.,32, 2686 (1899).

    Google Scholar 

  43. V. N. Knyazev, V. N. Drozd, and V. M. Minov, Zh. Org. Khim.,14, 105 (1978).

    Google Scholar 

  44. E. Farina, C. A. Veracini, and F. Pietra, Chem. Commun., No. 16, 672 (1974).

    Google Scholar 

  45. W. Augstein and F. Kröhnke, Liebigs Ann.,677, 158 (1966).

    Google Scholar 

  46. D. B. Renschling and F. Kröhnke, Chem. Ber.,104, 2103 (1971).

    Google Scholar 

  47. D. B. Renschling and F. Kröhnke, Chem. Ber.,104, 2110 (1971).

    Google Scholar 

  48. S. G. Morgan and J. Stewart, J. Chem. Soc., No. 8, 1057 (1938).

    Google Scholar 

  49. S. G. Morgan and J. Stewart, J. Chem. Soc., No. 9, 1292 (1938).

    Google Scholar 

  50. A. A. Kost, Khim. Geterotsikl. Soedin., No. 9, 1200 (1980).

    Google Scholar 

  51. S. S. Berg and V. Petrov, J. Chem. Soc., No. 3, 784 (1952).

    Google Scholar 

  52. E. J. Prisbe, J. P. H. Verheyden, and J. G. Moffatt, J. Org. Chem.,43, 4784 (1978).

    Google Scholar 

  53. A. Angiletti and B. Brambilla, Gazz. Chim. Ital.,60, 967 (1930).

    Google Scholar 

  54. M. W. Patridge, J. M. Sprake, and H. J. Vipond, J. Chem. Soc., C, No. 14, 1245 (1966).

    Google Scholar 

  55. C. Finzi and V. Bellavita, Gazz. Chim. Ital.,66, 421 (1936).

    Google Scholar 

  56. C. Angelini, Ann. Chim. (Rome),43, 247 (1953); Chem. Abstr.,48, 12044 (1954).

    Google Scholar 

  57. D. H. Hey, J. A. Leonard, and C. W. Rees, J. Chem. Soc., No. 11, 4579 (1962).

    Google Scholar 

  58. K. B. L. Mathur and K. P. Sarbhai, Tetrahedron Lett., No. 26, 1743 (1964).

    Google Scholar 

  59. D. M. Collington, D. H. Hey, and C. W. Rees, J. Chem. Soc., C, No. 7, 1030 (1968).

    Google Scholar 

  60. G. I. Migachev, A. M. Andrievskii, and L. V. Efimova, Khim. Geterotsikl. Soedin., No. 5, 703 (1977).

    Google Scholar 

  61. G. I. Migachev, Zh. Vses. Khim. Ova.,24, 395 (1979).

    Google Scholar 

  62. V. P. Novlkov, M. V. Popik, L. V. Vilkov, and G. I. Migachev, in: Modern State of Bio-organic Crystal Chemistry [in Russian], Chernogolovka (1978), p. 98.

  63. I. D. Sadekov, V. I. Minkin, and A. E. Lutskii, Usp. Khim.,39, 404 (1970).

    Google Scholar 

  64. G. I. Migachev and N. G. Grekhova, in: News in the Chemistry of Nitrogen-Containing Heterocycles [in Russian], Vol. 2, Zinatne, Riga (1979), p. 129.

    Google Scholar 

  65. M. Gawlak and R. F. Robbins, J. Chem. Soc., No. 12, 5135 (1964).

    Google Scholar 

  66. G. I. Migachev, A. M. Andrievskii, and N. S. Dokunikhin, Zh. Org. Khim.,13, 463 (1977).

    Google Scholar 

  67. G. I. Migachev, L. V. Eremenko, N. S. Dokunikhin, and K. M. Dyumaev, Zh. Org. Khim.,14, 668 (1978).

    Google Scholar 

  68. F. Kehrmann and J. Messinger, Chem. Ber.,26, 2372 (1892).

    Google Scholar 

  69. F. Kehrmann and J. Punti. Chem. Ber.,44, 2622 (1911).

    Google Scholar 

  70. L. Schild, Chem. Ber.,32, 2605 (1899).

    Google Scholar 

  71. S. P. Gupta, J. Indian Chem. Soc.,41, 52, (1964).

    Google Scholar 

  72. Z. V. Pushkareva, I. N. Noskova, and V. F. Gryazev, Khim. Geterotsikl. Soedin., No. 10, 1428 (1970).

    Google Scholar 

  73. V. A. Petrov and J. Saper, J. Chem. Soc., No. 7, 588 (1946).

    Google Scholar 

  74. G. S. Turpin, J. Chem. Soc.,59, 714 (1891).

    Google Scholar 

  75. F. Ullmann, Liebigs Ann.,366, 79 (1909).

    Google Scholar 

  76. F. Ullmann and S. M. Sane, Chem. Ber.,44, 3730 (1911).

    Google Scholar 

  77. O. L. Brady and C. Waller, J. Chem. Soc.,132, 1218 (1930).

    Google Scholar 

  78. F. Kehrmann and M. Ramm, Chem. Ber.,53, 2265 (1920).

    Google Scholar 

  79. E. Misslin and A. Bau, Helv. Chim. Acta,2, 285 (1919).

    Google Scholar 

  80. B. Boothroud and E. R. Clark, J. Chem. Soc., No. 5, 1499 (1953).

    Google Scholar 

  81. K. C. Roberts and H. B. Clark, J. Chem. Soc., Part, 2, 1312 (1935).

    Google Scholar 

  82. K. C. Roberts and C. G. M. Worms, J. Chem. Soc., Part 2, 1309 (1935).

    Google Scholar 

  83. M. F. Gundon and W. L. Matier, J. Chem. Soc., B, No. 3, 266 (1966).

    Google Scholar 

  84. V. N. Knyazev, V. N. Drozd, and T. Ya. Mozhaeva, Zh. Org. Khim.,16, 876 (1980).

    Google Scholar 

  85. K. C. Roberts and C. G. M. Worms, J. Chem. Soc., 727 (1934).

  86. F. Ullmann and W. Bruck, Chem. Ber.,41 3932 (1908).

    Google Scholar 

  87. F. Kehrmann and A. Baerle, Chem. Ber.,56, 2385 (1923).

    Google Scholar 

  88. H. Goldstein and A. Warnery, Helv. Chim. Acta,11, 489 (1928).

    Google Scholar 

  89. S. P. Massie, Chem. Rev.,54, 797 (1954).

    Google Scholar 

  90. J. Sykulski, Wiadom. Chem.,20, 1 (1966).

    Google Scholar 

  91. W. E. Truce, E. M. Kreider, and W. W. Brand, in: Organic Reactions, Vol. 18 (1970), p. 99.

    Google Scholar 

  92. J. Skarzewski and Z. Skrowaczewska, Wiadom. Chem.,28, 155 (1974).

    Google Scholar 

  93. V. N. Knyazev, V. N. Drozd, and T. Ya. Mozhaeva, Zh. Org. Khim.,15, 2561 (1979).

    Google Scholar 

  94. F. Kehrmann and J. Steinberg, Chem. Ber.,44, 3011 (1911).

    Google Scholar 

  95. W. J. Evans and S. Smiles, J. Chem. Soc., Part 1, 181 (1935); Part 2, 1263.

    Google Scholar 

  96. G. M. Bennett, J. Chem. Soc., No. 12, 4192 (1953).

    Google Scholar 

  97. S.V. Zhuravlev, A. N. Gritsenko, Z. I. Ermakova, and G. A. Khutorenko, Khim. Geterotsikl. Soedin., No. 8, 1041 (1970).

    Google Scholar 

  98. C. F. Wight and S. Smiles, J. Chem. Soc., 340 (1935)

  99. R. Mitsugi, H. Beyschlag, and R. Möhlau, Chem. Ber.,43, 927 (1910).

    Google Scholar 

  100. R. Möhlau, H. Beyschlag, and H. Köhres, Chem. Ber.,45, 131 (1912).

    Google Scholar 

  101. F. Kehrmann and F. Ringer,46, 3014 (1913).

  102. R. Baltzly, M. Harfenist, and F. J. Webb, J. Am. Chem. Soc.,68, 2673 (1946).

    Google Scholar 

  103. J. Pollak, E. Riesz, and Z. Kahane, Monatsh.,49, 213 (1929).

    Google Scholar 

  104. K. G. Ojha, S. K. Jain, and R. R. Gupta, Synth. Commun.,9, 457 (1979).

    Google Scholar 

  105. R. R. Gupta, S. K. Jain, and N. K. Goswami, Indian J. Chem.17B, 626 (1979).

    Google Scholar 

  106. H. L. Sharma, V. H. Sharma, and R. L. Mital, Tetrahedron Lett., No. 17, 1657 (1967).

    Google Scholar 

  107. H. Bauer, Chem. Ber.,47, 1873 (1914).

    Google Scholar 

  108. A. S. Rende and M. R. de Camp, Tetrahedron Lett., No. 33, 2877 (1975).

    Google Scholar 

  109. V. N. Knyazev, A. A. Klimov, and V. N. Drozd, Zh. Org. Khim.,11, 1440 (1975).

    Google Scholar 

  110. J. J. D'Amico, C. C. Tung, and W. E. Dahl, J. Org. Chem.,142, 2896 (1977).

    Google Scholar 

  111. F. Mauthner, Chem. Ber.,38, 1411 (1905).

    Google Scholar 

  112. F. Mauthner, Chem. Ber.,39, 1340 (1906).

    Google Scholar 

  113. G. E. Martin, J. C. Turley, L. Williams, M. L. Steenberg, and J. P. Buckley, J. Heterocycl. Chem.,14, 1067 (1977).

    Google Scholar 

  114. G. E. Martin, J. C. Turley, and L. Williams, J. Heterocycl. Chem.,14, 1249 (1977).

    Google Scholar 

  115. G. E. Martin and J. C. Turley, J. Heterocycl. Chem.,15, 609 (1978).

    Google Scholar 

  116. G. E. Martin and S. R. Caldwell, J. Heterocycl. Chem.,17, 989 (1980).

    Google Scholar 

  117. J. S. Davies, K. Smith, J. R. Turner, and G. Gumer, Tetrahedron Lett., No. 52, 5035 (1979).

    Google Scholar 

  118. E. Plazek and Z. Rodewald, Roczn. Chem.,16, 502 (1936).

    Google Scholar 

  119. J. A. Moore and F. J. Marascia, J. Am. Chem. Soc.,81, 6049 (1959).

    Google Scholar 

  120. T. Takahashi and F. Yoneda, Chem. Pharm. Bull.,6, 46 (1958).

    Google Scholar 

  121. T. Takahashi and F. Yoneda, Chem. Pharm. Bull.,6, 378 (1958).

    Google Scholar 

  122. O. Rodig, R. E. Collier, and R. K. Schlatzer, J. Med. Chem.,9, 116 (1966).

    Google Scholar 

  123. V. A. Petrow and E. L. Rewald, J. Chem. Soc., No. 5, 313 (1945).

    Google Scholar 

  124. F. H. Clarke, US Patent No. 3118884; Chem. Abstr.,60, 10696 (1964).

    Google Scholar 

  125. C. O. Okafor, Chem. Commun., No. 19, 878 (1974).

    Google Scholar 

  126. C. O. Okafor, Heterocycles,7, 391 (1977).

    Google Scholar 

  127. H. L. Yale and F. Sowinski, J. Am. Chem. Soc.,80, 1651 (1958).

    Google Scholar 

  128. H. L. Yale and J. Bernstein, US Patent No. 3106561; Chem. Abstr.,60, 2962 (1964).

    Google Scholar 

  129. Y. Maki, Yakugaku Zasshi,77, 485 (1957); Chem. Abstr.,51, 14738 (1957).

    Google Scholar 

  130. A. R. Gennaro, J. Org. Chem.,24, 1156 (1959).

    Google Scholar 

  131. Y. Maki, Yakugaku Zasshi,77, 862 (1957); Chem. Abstr.,52, 1174 (1958).

    Google Scholar 

  132. V. A. Petrow and E. L. Rewald, J. Chem. Soc., No. 9, 591 (1945).

    Google Scholar 

  133. Y. Maki, M. Suzuki, and T. Masugi, Chem. Pharm. Bull.,16, 559 (1968).

    Google Scholar 

  134. F. H. Clarke, G. B. Silverman, C. M. Watnick, and N. Sperber, J. Org. Chem.,26, 1126 (1961).

    Google Scholar 

  135. A. J. Saggiomo, P. N. Craig, and M. Gordon, J. Org. Chem.,23, 1906 (1958).

    Google Scholar 

  136. Y. Maki, Y. Okada, Y. Yoshida, and K. Obata, Gifu Yakka Daigaku Kiyo No.12, 54 (1962); Chem. Abstr.,59, 11479 (1963).

    Google Scholar 

  137. T. Takahashi and E. Yoshii, Chem. Pharm. Bull.,2, 382 (1954).

    Google Scholar 

  138. T. Takahashi and Y. Maki, Chem. Pharm. Bull.,3, 92 (1955).

    Google Scholar 

  139. T. Takahashi and Y. Maki, Yakugaku Zasshi,78, 417 (1958); Chem. Abstr.,52, 14622 (1958).

    Google Scholar 

  140. T. Takahashi and Y. Maki, Chem. Pharm. Bull,6, 369 (1958).

    Google Scholar 

  141. C. O. Okafor, J. Org. Chem.,32, 2006 (1967).

    Google Scholar 

  142. C. O. Okafor, Internat. J. Sulfur Chem., B,7, 109 (1972).

    Google Scholar 

  143. R. D. Schuetz and C. O. Okafor, Chim. Ther.,3, 289 (1968).

    Google Scholar 

  144. N. Bizzozero, J. Garanti, and G. Zecchi, Synthesis, No. 11, 909 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 867–886, July, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migachev, G.I., Danilenko, V.A. Synthesis of heterocyclic systems on the basis of intramolecular nucleophilic substitution of a nitro group (review). Chem Heterocycl Compd 18, 649–667 (1982). https://doi.org/10.1007/BF00568936

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00568936

Keywords

Navigation