Chemistry of Natural Compounds

, Volume 11, Issue 5, pp 648–654 | Cite as

Theoretical conformational analysis of the methylamides of N-acetyl-L-alanyl-L-proline and N-acetyl-L-prolyl-L-alanine. I

  • V. Z. Pletnev
  • É. P. Gromov
  • É. M. Popov


1. The most preferred forms of the compounds Ac-L-Ala-L-Pro-NHMe participating in a conformational equilibrium are characterized by both the trans and the cis configurations of the tertiary amide group.

2. The formation of intramolecular hydrogen bonds in the conformations of Ac-L-Ala-L-Pro-NHMe realized is unlikely.

3. The conformational states of the compounds Ac-L-Pro-L-Ala-NHMe with the trans configurations of the tertiary amide group are most probable. In nonpolar media a probability of the formation of structures with hydrogen bonds is high.

4. The conformational distribution of the fragments -X-Pro- and -Pro-X- in proteins agrees satisfactorily with the calculated values of the energy of the optimum forms of the corresponding dipeptides, Ac-L-Ala-L-Pro-NHMe and Ac-L-Pro-L-Ala-NHMe.


Dipeptide Intramolecular Hydrogen Bond Optimum Form Conformational State Trans Configuration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. M. Lipkind, S. F. Arkhipova, and E. M. Popov, Molekul. Biol., No. 4, 331 (1970).Google Scholar
  2. 2.
    M. A. Kreissler, N. A. Akhmedov, S. F. Arkhipova, G. M. Lipkind, and E. M. Popov, J. Chim. Phys.,71, 913 (1974).CrossRefGoogle Scholar
  3. 3.
    C. H. Wei, D. G. Doherty, and J. R. Einstein, Acta Cryst.,B 28, 907 (1972).CrossRefGoogle Scholar
  4. 4.
    W. Traub and U. Shmueli, Nature (London),198, 1165 (1963).CrossRefGoogle Scholar
  5. 5.
    C. M. Deber, F. A. Bovey, J. P. Carver, and E. R. Blout, J. Amer. Chem. Soc.,92, 6191 (1970).CrossRefGoogle Scholar
  6. 6.
    K. Wüthrich, A. Tun-Kyi, and R. Schwyzer, FEBS letters,25, 104 (1972).CrossRefGoogle Scholar
  7. 7.
    W. A. Thomas and M. K. Williams, Chem. Commun., 994 (1972).Google Scholar
  8. 8.
    D. E. Dorman, Macromolecules,6, 80 (1973).CrossRefGoogle Scholar
  9. 9.
    R. Deslauriers, R. Walter, and I. C. P. Smith, Biochem. Biophys. Res. Commun.,53, 244 (1973).CrossRefGoogle Scholar
  10. 10.
    J. Konnert and I. L. Karle, J. Amer. Chem. Soc.,91, 4888 (1969).CrossRefGoogle Scholar
  11. 11.
    P. Groth, Acta Chem. Scand.,24, 780 (1970).CrossRefGoogle Scholar
  12. 12.
    K. Titlestad, P. Groth, J. Dale, M. Y. Ali, Chem. Commun.,346, (1973).Google Scholar
  13. 13.
    I. L. Karle, J. Karle, Th. Wieland, W. Burgermeister, H. Faulstich, B. Witkop, Proc. Nat. Acad. Sci. U.S.,70, 1836 (1973).CrossRefGoogle Scholar
  14. 14.
    P. K. Ponnuswamy, R. F. McGuire, H. A. Scheraga, Int. J. Peptide Prot. Res.,5, 73 (1973).CrossRefGoogle Scholar
  15. 15.
    T. Matsuzaku and Y. Litaka, Acta Cryst.,B27, 507 (1971).CrossRefGoogle Scholar
  16. 16.
    V. Z. Pletnev, É. P. Gromov, and E. N. Popov, Khim. Prirodn. Soedin., 224 (1973).Google Scholar
  17. 17.
    R. A. Scott and H. A. Scheraga, J. Chem. Phys.,45, 2091 (1966).CrossRefGoogle Scholar
  18. 18.
    I. F. Yan, F. A. Momany, R. Hoffmann, and H. A. Scheraga, J. Phys. Chem.,74, 420 (1970).CrossRefGoogle Scholar
  19. 19.
    F. A. Momany, R. F. McGuire, J. F. Yan, and H. A. Scheraga, J. Phys. Chem.,75, 2286 (1971).CrossRefGoogle Scholar
  20. 20.
    G. M. Lipkind, S. F. Arkhipova, and E. M. Popov, Zh. Strukt. Khim.,11, 121 (1970).Google Scholar
  21. 21.
    E. M. Popov, V. G. Dashevskii, G. M. Lipkind, and S. F. Arkhipova, Molekul. Biol.,2, 612 (1968).Google Scholar
  22. 22.
    E. M. Popov, G. M. Lipkind, S. F. Arkhipova, and V. G. Dashevskii, Molekul. Biol.,2, 622 (1968).Google Scholar
  23. 23.
    E. M. Popov, G. M. Lipkind, and S. F. Arkhipova, Izv. Akad. Nauk SSSR, Ser. Khim., 312 (1971).Google Scholar
  24. 24.
    IUAPC-IUB Commission on Biochemical Nomenclature, Biochemistry,9, 3471 (1970).CrossRefGoogle Scholar
  25. 25.
    G. M. Lipkind and E. M. Popov, Int. J. Peptide Prot. Res.,5, 371 (1973).CrossRefGoogle Scholar
  26. 26.
    J. E. Mark and M. Goodman, J. Amer. Chem. Soc.,89, 1267 (1967).CrossRefGoogle Scholar
  27. 27.
    P. R. Schimmel and P. J. Flory, J. Mol. Biol.,34, 105 (1968).CrossRefGoogle Scholar
  28. 28.
    H. E. Warvari, K. K. Knaell, and R. A. Scott, J. Chem. Phys.,56, 2903 (1973).CrossRefGoogle Scholar
  29. 29.
    H. C. Watson, Prog. Stereochemistry,4, 299 (1969).Google Scholar
  30. 30.
    D. C. Phillips, Proc. Nat. Acad. Sci. U.S.,57, 484 (1967).CrossRefGoogle Scholar
  31. 31.
    J. J. Birktoft and D. M. Blow, J. Mol. Biol.,68, 187 (1972).CrossRefGoogle Scholar
  32. 32.
    W. N. Lipscomb, G. N. Reeke, J. Jean, A. A. Hartsuck, F. A. Quiocho, and P. H. Bethge, Phil. Trans. Roy. Soc.,B 257, 177 (1970).CrossRefGoogle Scholar
  33. 33.
    R. E. Dickerson, T. Takane, D. Eisenberg, O. B. Kallei, L. Samson, A. Cooper, and A. Margoliash, J. Biol. Chem.,246, 1511 (1971); T. T. Wu and E. A. Kabat, J. Mol. Biol.,75, 13 (1973).PubMedGoogle Scholar
  34. 34.
    T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. Dodson, D. C. Hodgkin, D. A. Mercola, M. Vijayan, Nature (London), 231, 506 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. Z. Pletnev
  • É. P. Gromov
  • É. M. Popov

There are no affiliations available

Personalised recommendations