Chemistry of Natural Compounds

, Volume 8, Issue 2, pp 184–190 | Cite as

Cardenolides of Strophanthus kombe. II

  • I. F. Makarevich


The seeds ofStrophanthus kombe Oliv. have yielded 12 cardiac glycosides. Of them, six were identified with known cardenolides: S 1 - periplocymarin; S 2 - cymarin; S 4 -periplocin; S 5 - k-strophanthin-β; S 7 - erysimoside; S 8 - k-strophanthoside. The structure of k-strophanthoside as strophanthidin 3β-[O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl-(1→4)-β-D-cymaropyranoside] has been confirmed.

This is apparently the first time that the other six glycosides have been isolated fromStrophanthus kombe in the pure state. Cardenolides S 9, S 11, and S 12 have strophanthotriose as the carbohydrate component, and their aglycones are, respectively, strophanthidol, strophanthidin-19-carboxylic acid, and 17βH-strophanthidin. These glycosides have been named in accordance with the structures established for them: k-strophanthol-γ (S 9), strophanthoside-19-carboxylic acid (S 12) and 17βH-strophanthoside (S 11). Cardenolide S 10, which has been called neoglucoerysimoside, is strophanthidin 3β-[O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl-(1→4)-β-D-digitoxopyranoside]. From neoglucoerysimoside a new trisaccharide has been obtained which we have called gentiobiosyldigitoxose. The structure of the latter can be characterized as O-β-D-glucopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-D-digitoxose.


Glycoside Paper Chromatography Cardenolide Gentiobiose Barium Carbonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. F. Makarevich, Khim. Prirodn. Soedin., 508 (1969).Google Scholar
  2. 2.
    A. Stoll, J. Renz, and W. Kreis, Helv. Chim. Acta,20, 1484 (1937).CrossRefGoogle Scholar
  3. 3.
    W. A. Jacobs and A. Hoffmann, J. Biol. Chem.,67, 609 (1926).Google Scholar
  4. 4.
    R. Zelnik, J. V. Euw, O. Schindler, and T. Reichstein, Helv. Chim. Acta,43, 593 (1960).CrossRefGoogle Scholar
  5. 5.
    W. Blome, A. Katz, and T. Reichstein, Pharmac. Acta Helv.,21, 325 (1946).Google Scholar
  6. 6.
    E. Rabald and J. Kraus, Z. Physiol. Chem.,262, 39 (1940).CrossRefGoogle Scholar
  7. 7.
    A. Katz and T. Reichstein, Helv. Chim. Acta,28, 476 (1945).CrossRefGoogle Scholar
  8. 8.
    F. Kaiser, E. Haack, N. Dölberg, and H. Spingler, Ann. Chem.,643, 192 (1961).CrossRefGoogle Scholar
  9. 9.
    W. Klyne, Biochem. J.,47, No. 4 (1950).Google Scholar
  10. 10.
    H. Lichti and A. Wartburg, Helv. Chim. Acta,44, 238 (1961).CrossRefGoogle Scholar
  11. 11.
    W. A. Jacobs and A. Hoffmann, J. Biol. Chem.,69, 153 (1926).Google Scholar
  12. 12.
    C. Tamm, Fortschr. Chem. Organ. Naturstoffe,13, 137 (1956).Google Scholar
  13. 13.
    J. C. Hess, A. Hunger, and T. Reichstein, Helv. Chim. Acta,35, 2202 (1952).CrossRefGoogle Scholar
  14. 14.
    V. A. Maslennikova, F. S. Khristulas, and N. K. Abubakirov, Dokl. Akad. Nauk SSSR,124, 822 (1959); Zh. Obsch. Khim.,31, 2424 (1961).Google Scholar
  15. 15.
    I. F. Makarevich, Khim. Prirodn. Soedin., 566 (1970).Google Scholar
  16. 16.
    W. A. Jacobs, J. Biol. Chem.,57, 553 (1923);74, 795 (1927).Google Scholar
  17. 17.
    W. A. Jacobs, J. Biol. Chem.,88, 519 (1930).Google Scholar
  18. 18.
    A. Katz and T. Reichstein, Pharm. Acta Helv.,19, 231 (1944).Google Scholar
  19. 19.
    I. Heilbron, Dictionary of Organic Compounds, 2nd ed., Eyre and Spottiswoode, London (1943–4).Google Scholar
  20. 20.
    R. Kuhn, H. Trischman, and J. Löw, Angew. Chem.,67, 32 (1955).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • I. F. Makarevich

There are no affiliations available

Personalised recommendations