Sintering and characterization of Bi4Ti3O12 ceramics


Polycrystalline ferroelectric Bi4Ti3O12 ceramics have been prepared by the method of reactive liquid phase sintering. The sintering behaviour of the Bi2O3-TiO2 composite was examined by plotting the isothermal densification curves. The results indicate that the starting oxides are involved in the reaction even at temperatures lower than or equal to 800°C, but the reaction advances at a very slow rate. Above solidus, the liquid phase promotes an extended reaction. Saturation observed in two densification curves, at 875 and 1100°C demonstrate that the reaction proceeds by two steps. A completion of the Bi4Ti3O12 formation occurs after 60 min of sintering at 1100°C. Optical micrographs of sintered bismuth titanate ceramics show randomly oriented ferroelectric grains separated by a paraelectric intergranular layer. The Bi4Ti3O12 crystallites exhibit a platelike morphology, similar in the appearance to mica, as evidenced by scanning electron micrographs. Isothermal annealing (750 to 950°C) does not affect the microstructure and electric properties of sintered bismuth titanate. The considerable value of dielectric permittivity and the appearance of hysteresis have been correlated to the presence of oxygen vacancies within the pseudotetragonal structure of Bi4Ti3O12. The oxygen vacancies are preferentially sited in the vicinity of bismuth ions as evidenced by X-ray photoemission data. XPS and AES measurements confirm that the surface concentration of cations comprising the Bi4Ti3O12 ceramics does not deviate from the nominal bulk composition.

This is a preview of subscription content, access via your institution.


  1. 1.

    B. Aurivillius,Arkiv Kemi 1 (1950) 499.

    Google Scholar 

  2. 2.

    J. F. Dorrian, R. E. Newnham, D. K. Smith andM. I. Kay,Ferroelectrics 3 (1971) 17.

    CAS  Article  Google Scholar 

  3. 3.

    G. W. Taylor, S. A. Keneman, A. Miller andS. E. Cummins,ibid. 2 (1971) 11.

    CAS  Article  Google Scholar 

  4. 4.

    M. M. Hopkins andA. Miller,ibid. 1 (1970) 37.

    CAS  Article  Google Scholar 

  5. 5.

    A. Fouskova andL. E. Cross,J. Appl. Phys. 41 (1970) 2834.

    CAS  Article  Google Scholar 

  6. 6.

    G. W. Taylor,Ferroelectrics 1 (1970) 79.

    CAS  Article  Google Scholar 

  7. 7.

    S. Ehara, K. Muramatsu, M. Shimazu, J. Tanaka, M. Tsukioka, Y. Mori, T. Hattori andH. Tamura,Jpn J. Appl. Phys. 20 (1981) 877.

    CAS  Article  Google Scholar 

  8. 8.

    E. C. Subbarao,J. Phys. Chem. Solids 23 (1962) 665.

    CAS  Article  Google Scholar 

  9. 9.

    E. I. Speranskaya, I. S. Rez, L. V. Kozlova, V. M. Skorikov andV. I. Slovov,Neorganicheskie Materiali 1 (1965) 232.

    CAS  Google Scholar 

  10. 10.

    E. V. Sinjakov, E. F. Dudnik, V. M. Duda, V. A. Podolski andM. A. Gorfunkel,Fizika tverdogo tela 16 (1974) 1515.

    Google Scholar 

  11. 11.

    D. Briggs andM. P. Seah (Eds) “Practical Surface Analysis By Auger and X-Ray Photoelectron Spectroscopy” (John Wiley, New York, 1983).

    Google Scholar 

  12. 12.

    T. Takenaka andK. Sakata,Jpn J. Appl. Phys. 19 (1980) 31.

    CAS  Article  Google Scholar 

  13. 13.

    C. B. Sawyer andC. H. Tower,Phys. Rev. 35 (1930) 269.

    CAS  Article  Google Scholar 

  14. 14.

    C. D. Wagner, W. M. Riggs, L. E. Davis andJ. F. Moulder in G. E. Muilenberg (Ed.), “Handbook of X-Ray Photoelectron Spectroscopy” (Perkin-Elmer, Physical Electronic Division, Eden Prairie, MN, 1978).

    Google Scholar 

  15. 15.

    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber, “Handbook of Auger Electron Spectroscopy” (PHI, Eden Prairie, MN, 1976).

    Google Scholar 

  16. 16.

    V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan andA. Goswami,J. Electron. Spectrosc. Relat. Phenom. 25 (1982) 181–189.

    CAS  Article  Google Scholar 

  17. 17.

    V. S. Dharmadhikari andA. Goswami,J. Vac. Sci. Technol. A1 (1983) 383–387.

    Article  Google Scholar 

  18. 18.

    G. B. Hoflund, H.-L. Yin, A. L. Grogan, Jr., D. A. Asbury, H. Yoneyama, O. Ikeda andH. Tamura,Langmuir 4 (1988) 346.

    CAS  Article  Google Scholar 

  19. 19.

    J. M. McKay andV. E. Henrich,Surf. Sci. 137 (1984) 463.

    CAS  Article  Google Scholar 

  20. 20.

    G. Rocker andW. Gopel,ibid. 181 (1987) 530.

    CAS  Article  Google Scholar 

  21. 21.

    O. Kubaschewski andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon, Oxford, 1979).

    Google Scholar 

  22. 22.

    B. Folkesson andP. Sundberg,Spectrosc. Lett. 20 (1987) 193–200.

    CAS  Article  Google Scholar 

  23. 23.

    J. H. Scofield,J. Electron. Spectrosc. Relat. Phenom. 8 (1976) 129–137.

    CAS  Article  Google Scholar 

  24. 24.

    S. E. Cummins andL. E. Cross,J. Appl. Phys. 39 (1968) 2268.

    CAS  Article  Google Scholar 

  25. 25.

    T. Kimura, T. Kanazawa andT. Yamaguchi,J. Amer Ceram. Soc. 66 (1983) 597.

    CAS  Article  Google Scholar 

  26. 26.

    S. Ikegami andI. Ueda,Jpn J. Appl. Phys. 13 (1974) 1572.

    CAS  Article  Google Scholar 

  27. 27.

    V. A. Podolski, E. F. Dudnik andT. M. Stolpakova,Izv. Akad. Nauk USSR 39 (1975) 1041.

    Google Scholar 

  28. 28.

    H. Watanabe, T. Kimura andT. Yamaguchi,J. Amer. Ceram. Soc. 72 (1989) 289.

    CAS  Article  Google Scholar 

  29. 29.

    W. Xiaoli andY. Xi,Jpn J. Appl. Phys. 24 (Suppl. 24-2) (1985) 1033.

    Article  Google Scholar 

  30. 30.

    J. Zhi-Cheng, An Li-Dun andY. Yuan-Gen,Appl. Surf. Sci. 24 (1985) 134.

    Article  Google Scholar 

  31. 31.

    A. A. Zavyalova andR. M. Imamov,Sov. Phys.- Crystallogr. 13 (1968) 37 (Engl. transl.).

    Google Scholar 

  32. 32.

    E. M. Levin andR. S. Roth,J. Res. NBS 68A (1964) 189.

    Article  Google Scholar 

  33. 33.

    T. N. Taylor, C. T. Campbell, J. W. Rogers, Jr., W. P. Ellis andJ. M. White,Surf. Sci. 134 (1983) 529–546.

    CAS  Article  Google Scholar 

  34. 34.

    E. C. Subbarao,Phys. Rev. 122 (1961) 804.

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jovalekic, C., Atanasoska, L., Petrovic, V. et al. Sintering and characterization of Bi4Ti3O12 ceramics. J Mater Sci 26, 3553–3564 (1991).

Download citation


  • Oxygen Vacancy
  • Dielectric Permittivity
  • Liquid Phase Sinter
  • Isothermal Annealing
  • Reactive Liquid Phase