Skip to main content
Log in

Heterogeneous nucleation of solidification of cadmium particles embedded in an aluminium matrix

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A hypomonotectic alloy of Al-4.5wt%Cd has been manufactured by melt spinning and the resulting microstructure examined by transmission electron microscopy. As-melt spun hypomonotectic Al-4.5wt%Cd consists of a homogeneous distribution of faceted 5 to 120 nm diameter cadmium particles embedded in a matrix of aluminium, formed during the monotectic solidification reaction. The cadmium particles exhibit an orientation relationship with the aluminium matrix of {111}Al//{0001}Cd and 〈110〉AlAl//〈11¯20> Cd, with four cadmium particle variants depending upon which of the four {111}Al planes is parallel to {0001}Cd. The cadmium particles exibit a distorted cuboctahedral shape, bounded by six curved {100}Al//{20¯23}Cd facets, six curved {111}Al/{40¯43}Cd facets and two flat {111}Al//{0001}Cd facets. The as-melt spun cadmium particle shape is metastable and the cadmium particles equilibrate during heat treatment below the cadmium melting point, becoming elongated to increase the surface area and decrease the separation of the {111}Al//{0001}Cd facets.

The equilibrium cadmium particle shape and, therefore, the anisotropy of solid aluminium-solid cadmium and solid aluminium -liquid cadmium surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 420 °C. The anisotropy of solid aluminium-solid cadmium surface energy is constant between room temperature and the cadmium melting point, with the {100}Al//{20¯23}Cd surface energy on average 40% greater than the {111}Al//{0001}Cd surface energy, and 10% greater than the {111}Al//{40¯43Cd surface energy. When the cadmium particles melt at temperatures above 321 °C, the {100}Al//{20¯23}Cd facets disappear and the {111}Al//{40¯43}Cd and {111}A1//{0001}Cd surface energies become equal. The {111}Al facets do not disappear when the cadmium particles melt, and the anisotropy of solid aluminium-liquid cadmium surface energy decreases gradually with increasing temperature above the cadmium melting point.

The kinetics of cadmium solidification have been examined by heating and cooling experiments in a differential scanning calorimeter over a range of heating and cooling rates. Cadmium particle solidification is nucleated catalytically by the surrounding aluminium matrix on the {111}Al faceted surfaces, with an undercooling of 56 K and a contact angle of 42 °. The nucleation kinetics of cadmium particle solidification are in good agreement with the hemispherical cap model of heterogeneous nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Christian, in “The Theory of Transformations in Metals and Alloys” (Pergamon, Oxford, 1975)

    Google Scholar 

  2. B. Cantor, to be published

  3. K. I. Moore, D. L. Zhang and B. Cantor, Acta Metall Mater. 38 (1990) 1327.

    Article  CAS  Google Scholar 

  4. B. Vonnegut, J. Colloid Sci. 3 (1948) 563

    Article  CAS  Google Scholar 

  5. D. Turnbull, J. Chem. Phys. 18 (1950) 768

    Article  CAS  Google Scholar 

  6. J. H. Perepezko, D. H. Rasmussen, I. E. Anderson and C. R. Loper, ”Solidification and Casting of Metals” (Metals Society, London, 1979) p. 169

    Google Scholar 

  7. J. H. Perepezko, in “Rapid Solidification Processing: Principle and Technology”, edited by R. Mehrabian, B. H. Kear and M. Cohen (Claitors, Boston, 1980) p. 56

    Google Scholar 

  8. Y. Miyayazawa and G. Pound, J. Cryst. Growth 23 (1974) 45

    Article  Google Scholar 

  9. J. H. Perepezko and J. S. Paik, J. Non-Cryst. Solids 61/62 (1984) 113

    Article  Google Scholar 

  10. M. G. Chu, Y. Shiohara and M. C. Flemings, Met. Trans. 15A (1984) 1303

    Article  CAS  Google Scholar 

  11. K. P. Cooper, I. E. Anderson and J. H. Perepezko, in “Rapidly Quenched Metals IV”, edited by K. Suzuki and T. Masumato (Japanese Institute of Metals, Tokyo, 1982) p. 107

    Google Scholar 

  12. B. A. Mueller, J. J. Richmond, J. H. Perepezko, in “Rapidly Quenched Metals V”, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 47

    Chapter  Google Scholar 

  13. J. H. Perepezko, B. A. Mueller, J. J. Richmond and K. P. Cooper, in “Rapidly Quenched Metals V”, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 43

    Chapter  Google Scholar 

  14. D. G. MacIasaac, Y. Shiohara, M. G. Chu and M. C. Flemings, in “Grain Refinement in Casting and Welds” (AIME, New York, 1983) p. 87

    Google Scholar 

  15. J. H. Perepezko and J. S. Smith, J. Non-Cryst. Solids 44 (1981) 65

    Article  CAS  Google Scholar 

  16. D. Turnbull and R. E. Cech, J. Appl. Phys. 21 (1950) 804

    Article  Google Scholar 

  17. D. Turnbull Trans. Met. Soc. AIME 188 (1950) 1144

    CAS  Google Scholar 

  18. V. Scripov in “Crystal Growth and Materials”, edited by E. Kaldis and H. Scheel (North-Holland, Amsterdam, 1977) p. 327

    Google Scholar 

  19. M. J. Stowell, Phil. Mag. 22 (1970) 1

    Article  Google Scholar 

  20. F. J. Bradshaw, M. E. Gasper and S. Pearson, J. Inst. Met. 87 (1958–59) 15

    CAS  Google Scholar 

  21. B. E. Sundquist and L. F. Mondolfo Trans. Met. Soc. AIME 221 (1961) 157

    CAS  Google Scholar 

  22. J. H. Hollomon and D. Turnbull, ibid. 191 (1951) 803

    Google Scholar 

  23. R. E. Cech and D. Turnbull, ibid. 206 (1956) 124

    Google Scholar 

  24. L. L. Lacy, M. B. Robinson and J. J. Rathz, J. Cryst. Growth 51 (1981) 47

    Article  CAS  Google Scholar 

  25. A. J. Drehman and A. L. Greer, Acta Metall. 32 (1984) 323

    Article  CAS  Google Scholar 

  26. A. J. Drehman and D. Turnbull, Scripta Metall. 15 (1981) 543

    Article  CAS  Google Scholar 

  27. C. S. Kiminami and P. K. Sahm, Acta Metall. 34 (1986) 2644

    Article  Google Scholar 

  28. S. Y. Shiohara and P. G. Ward, Can. Met. Quart 3 (1964) 117

    Article  Google Scholar 

  29. J. Fehling and E. Scheil, Z. Metallkde 53 (1962) 593

    CAS  Google Scholar 

  30. J. Walker, in “Physical Chemistry of Process Metallurgy”, edited by G. R. St. Pierre (AIME, New York, 1961) p. 845

    Google Scholar 

  31. T. Z. Kattamis and M. C. Flemings, Trans. Met. Soc. AIME 236 (1966) 1523

    CAS  Google Scholar 

  32. T. Z. Kattamis and M. C. Flemings, Met. Trans. 1 (1970) 1449

    Article  CAS  Google Scholar 

  33. T. Z. Kattamis, J. Mater. Sci. 5 (1970) 531

    Article  CAS  Google Scholar 

  34. S. N. Ojha, P. Ramachandrarao and T. R. Anantharaman, Trans. Indian Inst. Met. 36 (1983) 51

    CAS  Google Scholar 

  35. S. N. Ojha, T. R. Anantharaman and P. Ramachandrarao, J. Mater. Sei. 17 (1982) 264

    Article  Google Scholar 

  36. C. C. Wang and C. S. Smith, Trans Met. Soc. AIME 188 (1950) 136

    CAS  Google Scholar 

  37. R. T. Southin and G. A. Chadwick, Acta Metall. 26 (1978) 223

    Article  CAS  Google Scholar 

  38. P. G. Boswell and G. A. Chadwick, ibid. 28 (1980) 209

    Article  CAS  Google Scholar 

  39. P. G. Boswell, G. A. Chadwick, R. Elliot and F. R. Sale, in “Solidification and Casting of Metals” (Metals Society, London, 1979) p. 611

    Google Scholar 

  40. A. G. Gillen and B. Cantor, Acta Metall. 33 (1985) 1813

    Article  CAS  Google Scholar 

  41. G. Wulff, Z. Kristallog. 53 (1901) 440

    Google Scholar 

  42. J. W. Martin and R. D. Doherty, in “Stability of Microstructure in Metallic Systems” (Cambridge University Press, Cambridge, 1976)

    Google Scholar 

  43. T. B. Massalski, J. L. Murray, L. H. Mennett and H. Bakers, in “Binary Alloy Phase Diagrams” (American Society for Metals, Ohio, 1986)

    Google Scholar 

  44. B. Derby, Scripta Metall. 8 (1984) 169

    Article  Google Scholar 

  45. B. Derby and J. J. Favier, Acta Metall. 31 (1983) 1123

    Article  CAS  Google Scholar 

  46. P. G. Shewmon, in “Diffusion in Solids” (McGraw-Hill Book Company, Wiley, 1963) 1543

  47. K. I. Moore, K. Chattopadhyay and B. Cantor, Proc. Roy. Soc. A414 (1987) 499

    Article  Google Scholar 

  48. B. E. Sundquist, Acta Metall. 12 (1964) 67

    Article  CAS  Google Scholar 

  49. W. T. Kim, D. L. Zhang and B. Cantor, Met. Trans., in press

  50. D. Turnbull, J. Appl. Phys. 21 (1950) 1022

    Article  CAS  Google Scholar 

  51. B. Cantor and R. D. Doherty, Acta Metall. 27 (1979) 33

    Article  CAS  Google Scholar 

  52. L. F. Mondolfo, N. L. Parist and G. J. Kardys, Mater. Sci. Eng. 68 (1984–1985) 249

    Article  Google Scholar 

  53. E. A. Brandes and C. J. Smithells, in “Metals Reference Handbook”, 6th edn (Butterworths, London, 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D.L., Chattopadhyay, K. & Cantor, B. Heterogeneous nucleation of solidification of cadmium particles embedded in an aluminium matrix. J Mater Sci 26, 1531–1544 (1991). https://doi.org/10.1007/BF00544662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544662

Keywords

Navigation