Skip to main content
Log in

Composition-microstructure-property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 400 °C

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A 15 μm monofilament was extruded from a Yajima's type molten polycarbosilane, stabilized by addition of oxygen and heat-treated at 800 to 1400 °C under an argon atmosphere. Two important phenomena occur during pyrolysis. At 500 to 750 °C, an organic-inorganic state transition takes place with a first weight loss. It yields an amorphous material stable up to about 1100 °C. At this temperature, its composition is close to Si4C5O2. It can be described as a continuum of SiC4 and/or SiC4−xOx tetrahedral species (and possibly contains free carbon), with a homogeneity domain size less than 1 nm. The amorphous filament exhibits a high strength and semi-conducting properties. Above 1200 °C, a thermal decomposition of the amorphous material takes place with an evolution of gaseous species thought to be mainly SiO and CO, an important cross-section shrinkage and the formation of 7 to 20 nm SiC crystals which are surrounded with a poorly organized turbostratic carbon. The amorphous-crystalline state transition results in a drop in the tensile failure strength and an increase, by four orders of magnitude, in the electrical conductivity which becomes temperature independent. The former effect is due to the crystallization of the filament and the latter to a percolation phenomenon related to the intergranular carbon. The low stiffness is also due to the presence of carbon. It is anticipated that this transition is mainly related to the decomposition of the silicon oxycarbide species. Finally, a 40 to 50 nm layer of turbostratic carbon is formed at the filament surface at 1200 to 1400 °C whose origin remains uncertain. It is thought to be mainly responsible for the formation of the carbon interphase in the high-temperature processing of ceramic matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Naslain, “Introduction to Composite Materials” Vol. 2, “Metallic and Ceramic Matrix Composites” (in French) (CNRS/IMC, Bordeaux, 1985).

    Google Scholar 

  2. S. Yajima, in “Handbook of Composites” Vol. 1, edited by W. Watt and B. V. Perov (Eisevier, Amsterdam, 1985).

    Google Scholar 

  3. S. Yajima, J. Hayashi and M. Omori, Chem. Lett. (1975) 931.

  4. S. Yajima, K. Okamura and M. Omori, ibid. (1975) 1209.

  5. S. Yajima, Y. Hasegawa, J. Hayashi and M. Iimura, J. Mater. Sci. 13 (1978) 2529.

    Google Scholar 

  6. Y. Hasegawa, M. Iimura and S. Yajima, ibid. 15 (1980) 720.

    Article  CAS  Google Scholar 

  7. Y. Hasegawa and K. Okamura, ibid. 18 (1983) 3633.

    Article  CAS  Google Scholar 

  8. Idem, ibid. 21 (1986) 321.

    Article  CAS  Google Scholar 

  9. K. Okamura, Composites 18 (1987) 107.

    Article  CAS  Google Scholar 

  10. K. Okamura, US Pat. 4650773 17 (1987).

  11. K. Okamura, M. Sato, Y. Hasegawa and T. Amano, Chem. Lett. (1984) 2059.

  12. L. C. Sawyer, M. Jamiesson, O. Brikowski, M. I. Haider and R. T. Chen, J. Amer. Ceram. Soc. 70 (1987) 798.

    Article  CAS  Google Scholar 

  13. Y. Maniette and A. Oberlin, J. Mater. Sci. 24 (1989) 3361.

    Article  CAS  Google Scholar 

  14. J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.

    Article  CAS  Google Scholar 

  15. L. C. Sawyer, R. T. Chen, F. Haimback, P. J. Harget, E. R. Prack and M. Jaffe, Ceram. Engng Sci. Proc. 7 (1986) 914.

    Article  CAS  Google Scholar 

  16. C. Laffon, A. M. Flank, R. Hagege, P. Olry, J. Cotteret, M. Laridjani, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, J. Mater. Sci. 24 (1989) 1503.

    Article  CAS  Google Scholar 

  17. T. J. Clark, R. M. Arons, J. B. Stammatoff and J. Rabe, Ceram. Engng Sci. Proc. 7–8 (1985) 576.

    Article  Google Scholar 

  18. A. S. Fareed, P. Fong, M. J. Koczak and F. M. Ko, Amer. Ceram. Soc. Bull. 66 (1987) 353.

    CAS  Google Scholar 

  19. T. Mah, N. L. Heicht, D. E. McCallum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, J. Mater. Sci. 19 (1984) 1191.

    Article  CAS  Google Scholar 

  20. L. C. Sawyer, R. Arons, F. Haimback, M. Jaffe and K. D. Rappaport, Ceram. Engng Sci. Proc. 7–8 (1985) 567.

    Article  Google Scholar 

  21. G. Simon and A. R. Bunsell, J. Mater. Sci. 19 (1984) 3649.

    Article  CAS  Google Scholar 

  22. T. J. Clark, M. Jaffe, J. Rabe and N. R. Langley, Ceram. Engng Sci. Proc. 7–8 (1986) 901.

    Article  Google Scholar 

  23. Y. Sasaki, Y. Nishima, M. Sato and K. Okamura, J. Mater. Sci. 22 (1987) 443.

    Article  CAS  Google Scholar 

  24. K. L. Luthra, J. Amer. Ceram. Soc. 69 (1986) C-231.

    Article  Google Scholar 

  25. S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rawcliffe, ibid. 71 (1988) C-132.

    Google Scholar 

  26. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, J. C. Sarthou, A. Delpuech, C. Laffon, P. Lagarde, F. Cruege, P. V. Huong, M. Monthioux and A. Oberlin, J. Mater. Sci. in press.

  27. E. Bouillon, R. Pailler, R. Naslain, E. Bacque, J. P. Pillot, M. Birot, J. Dunogues and P. V. Huong, ibid.

  28. A. Oberlin, Carbon 17 (1979) 7.

    Article  CAS  Google Scholar 

  29. M. Monthioux, A. Oberlin and E. Bouillon, Compos. Sci. Technol. 37 (1990) 21.

    Article  Google Scholar 

  30. A. R. Bunsell, J. W. S. Hearle and R. D. Huter, J. Phys. E. Sci. Instrum. 4 (1971) 868.

    Article  Google Scholar 

  31. J. F. Villeneuve, Internal report (1988) LCTS (UM47) 33600 Pessac, France.

  32. J. J. Poupeau, D. Abbe and J. Jamet, ONERA Report (1982).

  33. L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.

    Article  CAS  Google Scholar 

  34. J. A. Taylor, Appl. Surf. Sci. 7 (1981) 168.

    Article  CAS  Google Scholar 

  35. Y. Mizokawa, K. M. Geib and C. W. Wilmsen, J. Vac. Technol. A. 4 (1986) 1696.

    Article  CAS  Google Scholar 

  36. M. N. Rahaman and L. C. De Jonghe, Amer. Ceram. Soc. Bull. 66 (1987) 782.

    CAS  Google Scholar 

  37. T. Goto, F. Itoh, K. Suzuki and T. Hurui, J. Mater. Sci. Lett. 2 (1983) 805.

    Article  CAS  Google Scholar 

  38. W. Y. Lee, J. Appl. Phys. 51 (1980) 3365.

    Article  CAS  Google Scholar 

  39. R. Pampuch, W. Ptak, S. Jona and J. Stoch, in “Energy and Ceramics” edited by P. Vinccuzini (Elsevier, Amsterdam, 1980) pp. 435–48.

    Google Scholar 

  40. S. Yajima, K. Okamura, T. Matsuzawa and T. Schishido, Nature 279 (1979) 706.

    Article  CAS  Google Scholar 

  41. A. Oberlin, Carbon 22 (1984) 521.

    Article  CAS  Google Scholar 

  42. A. Oberlin, S. Bonnamy, X. Bourrat, M. Monthioux and J. N. Rouzaud, ACS. Symp. Ser. 303 (1986) 85.

    Article  CAS  Google Scholar 

  43. P. Lecoustumer, M. Monthioux and A. Oberlin, in “Composite Materials for High Temperature Applications” (in French), edited by P. Naslain, J. Lamalle and J. L. Zulian (Amac-Codemac, Bordeaux, 1990).

    Google Scholar 

  44. Thermodata, Saint-Martin d'Héres (1988).

  45. E. Menessier, University thesis 216, Bordeaux (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillon, E., Mocaer, D., Villeneuve, J.F. et al. Composition-microstructure-property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 400 °C. J Mater Sci 26, 1517–1530 (1991). https://doi.org/10.1007/BF00544661

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544661

Keywords

Navigation