Skip to main content
Log in

Microstructure — cooling rate correlations in melt-spun alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photocalorimetric techniques have been used to measure top surface temperatures during melt spinning of Ni-Al and 316L stainless steel ribbons, in order to investigate the effect of cooling rate on the melt-spun alloy microstructures. Cooling conditions during melt-spinning are found to be near-Newtonian, with mean cooling rates, heat transfer coefficients and Nusselt numbers in the range 4×104 to 5×105 K sec−1, 5×104 to 3× 105 Wm−2K−1 and 0.07 to 0.22, respectively, for wheel speeds in the range 4 to 36 m sec−1. The cooling rate during melt-spinning is directly proportional to the wheel speed and inversely proportional to the square of the ribbon thickness. Melt-spun Ni-Al and 316L stainless steel ribbons exhibit a columnar through-thickness solidification microstructure, with a segregation-free region adjacent to the wheel surface. Solidification takes place by heterogeneous nucleation of the undercooled liquid on the wheel surface, followed by partitionless solidification during recalescence, and finally cellular breakdown and segregated solidification. The columnar grain size decreases and the fractional segregation-free thickness increases with increasing wheel speed and cooling rate, indicating that the nucleation undercooling in the liquid is proportional to the cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cantor (ed.), “Rapidly Quenched Metals III” (Metals Society, London, 1978).

    Google Scholar 

  2. T. Masumoto and K. Suzuki (eds), “Rapidly Quenched Metals IV” (Japan Institute of Metals, Sendai, 1982).

    Google Scholar 

  3. S. Steeb and H. Warlimont (eds), “Rapidly Quenched Metals V” (North-Holland, Amsterdam, 1985).

    Google Scholar 

  4. R. W. Cochrane and J. O. Strom-Olsen (eds), “Rapidly Quenched Metals 6” (Elsevier, London, 1988).

    Google Scholar 

  5. B. Cantor, in “Science and Technology of the Undercooled Melt”, edited by P. R. Sahm, H. Jones and C. M. Adam (Nijhoff, Dordrecht, 1986) p. 3.

    Chapter  Google Scholar 

  6. Idem, in “Rapidly Solidified Amorphous and Crystalline Alloys”, edited by B. H. Kear and B. C. Giessen (Elsevier North-Holland, New York, 1982) p. 317.

    Google Scholar 

  7. H. Jones, Rep. Prog. Phys. 36 (1973) 1425.

    Article  CAS  Google Scholar 

  8. Idem, “Rapid Solidification of Metals and Alloys” (Institution of Metallurgists, London, 1982).

    Google Scholar 

  9. M. Hansen and K. Anderko, “The Constitution of Binary Alloys” (McGraw-Hill, New York, 1958).

    Book  Google Scholar 

  10. B. P. Bewlay and B. Cantor, Int. J. Rapid Solidifn 2 (1986) 107.

    CAS  Google Scholar 

  11. C. Hayzelden, J. J. Rayment and B. Cantor, Acta Metall. 31 (1983) 379.

    Article  CAS  Google Scholar 

  12. A. G. Gillen and B. Cantor, ibid. 33 (1985) 1813.

    Article  CAS  Google Scholar 

  13. A. J. B. Vincent, B. P. Bewlay, B. Cantor, R. J. Zabala, R. P. LaForce, S. C. Huang and L. A. Johnson, J. Mater. Sci. Lett. 6 (1987) 121.

    Article  CAS  Google Scholar 

  14. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids” (Oxford University Press, Oxford, 1959).

    Google Scholar 

  15. C. Hayzelden, DPhil thesis, University of Sussex (1984).

  16. T. W. Clyne, Metall. Trans. 15B (1984) 369.

    Article  CAS  Google Scholar 

  17. R. C. Ruhl, Mater. Sci. Eng. 1 (1967) 313.

    Article  Google Scholar 

  18. J. H. Vincent, J. G. Herbertson and H. A. Davies, in T. Masumoto and K. Suzuki (eds), “Rapidly Quenched Metals IV”, Vol. 1 (Japan Institute of Metals, Sendai, 1982) p. 77.

    Google Scholar 

  19. A. G. Gillen, T. C. Willis and B. Cantor, to be published.

  20. W. J. Boettinger, D. Schechtman, R. J. Schaeffer and F. S. Biancello, Metall. Trans. 15A (1984) 55.

    Article  CAS  Google Scholar 

  21. M. Hillert and B. Sundman, Acta Metall. 24 (1976) 731.

    Article  CAS  Google Scholar 

  22. J. C. Baker and J. W. Cahn, ibid. 17 (1969) 575.

    Article  CAS  Google Scholar 

  23. D. Turnbull, J. Appl. Phys. 21 (1950) 1022.

    Article  CAS  Google Scholar 

  24. B. Cantor and R. D. Doherty, Acta Metall. 27 (1979) 33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantor, B., Kim, W.T., Bewlay, B.P. et al. Microstructure — cooling rate correlations in melt-spun alloys. J Mater Sci 26, 1266–1276 (1991). https://doi.org/10.1007/BF00544465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544465

Keywords

Navigation