Temperature dependence of the elastic moduli and damping for polycrystalline LiF-22% CaF2 eutectic salt


The Young's and shear moduli and damping were measured for as-cast polycrystalline LiF-22 (mol%) CaF2 eutectic specimens as a function of temperature using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The shear modulus decreased with increasing temperature from about 40 GPa at 295 K to about 30 GPa at 1000 K, while the Young's modulus decreased from about 115 GPa at 295 K to about 35 GPa at 900 K. These values are compared with those derived from the rule of mixtures using elastic moduli data for LiF and CaF2 single crystals. It is shown that, while the shear modulus data agree reasonably well with the predicted trend, there is a large discrepancy between the theoretical calculations and the Young's modulus values, where this disagreement increases with increasing temperature. The reason for this discrepancy is unclear but several possibilities are examined and discussed. The effective activation energy for damping was determined to be about 0.21 eV/atom which was found to be in reasonable agreement with the activation energy for migration of anion vacancies in the CaF2 phase.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. K. Misra and J. D. Whittenberger, Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference (IECEC '87), Philadelphia (American Institute of Aeronautics and Astronautics, Washington, DC, 1987) p. 188.

    Google Scholar 

  2. 2.

    A. K. Misra, J. Electrochem. Soc. 135 (1988) 850.

    CAS  Article  Google Scholar 

  3. 3.

    W. E. Roake, ibid. 104 (1957) 661.

    CAS  Article  Google Scholar 

  4. 4.

    M. O. Dustin, J. M. Savino, D. E. Lacy, R. P. Migra, A. L. Juhasz and C. E. Coles, “Solar Engineering-1987” edited by D. Y. Goswami, K. Watanabe and H. M. Healey, (The American Society of Mechanical Engineers, New York 1987) p. 574.

    Google Scholar 

  5. 5.

    S. V. Raj and J. D. Whittenberger, J. Amer. Ceram. Soc., 73 (1990) 403.

    CAS  Article  Google Scholar 

  6. 6.

    S. V. Raj and J. D. Whittenberger, to be published.

  7. 7.

    S. V. Raj and J. D. Whittenberger, “Strength of Metals and Alloys (ICSMA 8)”, edited by P. O. Kettunen, T. K. Lepistö and M. E. Lehtonen (Pergamon, Oxford, 1988). pp. 1007–1012.

    Google Scholar 

  8. 8.

    J. Marx, Rev. Sci. Instrum., 22 (1951) 503.

    Article  Google Scholar 

  9. 9.

    W. H. Robinson and A. Edgar, IEEE Trans. Sonics Ultrasonics SU-21 (1974) 98.

    Article  Google Scholar 

  10. 10.

    J. L. Tallon and A. Wolfenden, J. Phys. Chem. Solids 40 (1979) 831.

    CAS  Article  Google Scholar 

  11. 11.

    M. R. Harmouche and A. Wolfenden, Mater. Sci. Eng. 84 (1986) 35.

    CAS  Article  Google Scholar 

  12. 12.

    J. M. Wolla and A. Wolfenden, ASTM STP 1045 (American Society for Testing and Materials, Philadelphia, 1989) p. 110.

    Google Scholar 

  13. 13.

    “Thermal Expansion (Nonmetallic Solids), Thermophysical Properties of Matter (TPRC Data Series)”, Vol. 13, Purdue Research Foundation (Plenum, New York, 1977).

  14. 14.

    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976) p. 775.

    Google Scholar 

  15. 15.

    M. E. Fine and N. T. Kenney, J. Metals 4 (1952) 151.

    Google Scholar 

  16. 16.

    M. E. Fine, ASTM STP 129 (American Society for Testing of Materials, Philadelphia, 1952) p. 43.

    Google Scholar 

  17. 17.

    R. W. Ure, J. Chem. Phys., 26 (1957) 1363.

    CAS  Article  Google Scholar 

  18. 18.

    E. Barsis and A. Taylor, ibid. 45 (1966) 1154.

    CAS  Article  Google Scholar 

  19. 19.

    Hj. Matzke, J. Mater. Sci. 5 (1970) 831.

    CAS  Article  Google Scholar 

  20. 20.

    R. Van Steenwinkel, Z. Naturforsch. A29 (1974) 278.

    Google Scholar 

  21. 21.

    A. D. Franklin, J. Phys. Chem. Solids 26 (1964) 933.

    Article  Google Scholar 

  22. 22.

    Idem., ibid 29 (1968) 823.

    CAS  Article  Google Scholar 

  23. 23.

    R. J. Lysiak and P. P. Mahendroo, J. Chem. Phys. 44 (1966) 4025.

    Article  Google Scholar 

  24. 24.

    G. A. Keig and R. L. Coble, J. Appl. Phys. 39 (1968) 6090.

    CAS  Article  Google Scholar 

  25. 25.

    H. J. Stöckmann, D. Dubbers, M. Grupp, H. Grupp, H. Ackermann and P. Heitjans, Z. Phys. B30 (1978) 19.

    Google Scholar 

  26. 26.

    A. G. Evans and P. L. Pratt, Phil. Mag. 20 (1969) 1213.

    CAS  Article  Google Scholar 

  27. 27.

    S. Chowdhury, S. K. Sen and D. Roy, Phys. Status Solidi B 56 (1973) 403.

    Article  Google Scholar 

  28. 28.

    T. G. Stoebe and R. A. Huggins, J. Mater. Sci. 1 (1966) 117.

    Article  Google Scholar 

  29. 29.

    G. Simmons and H. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook” (MIT Press, Cambridge, Mass, 1971).

    Google Scholar 

  30. 30.

    Z. Hashin and S. Shtrikman, J. Mech. Phys. Sol. 10 (1962) 335.

    Article  Google Scholar 

  31. 31.

    Idem., ibid. 10 (1962) 343.

    CAS  Article  Google Scholar 

  32. 32.

    M. F. Ashby, Acta Metall. 20 (1972) 887.

    CAS  Article  Google Scholar 

  33. 33.

    H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics” (Pergamon, Oxford, 1982).

    Google Scholar 

  34. 34.

    E. Schreiber, O. L. Anderson and N. Soga, “Elastic Constants and Their Measurements” (McGraw-Hill, New York, 1973) p. 6.

    Google Scholar 

  35. 35.

    Y. M. Chernov and A. V. Stepanov, Sov. Phys. 3 (1962) 2097.

    Google Scholar 

  36. 36.

    S. P. Nikanorov, B. K. Kardashev and N. S. Kas'kovich, ibid, 10 (1968) 703.

    Google Scholar 

  37. 37.

    S. Hart, Brit. J. Appl. Phys. 1 (1968) 1285.

    Google Scholar 

  38. 38.

    D. Vidal, C. R. Acad. Sci. B279 (1974) 345.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolfenden, A., Lastrapes, G., Duggan, M.B. et al. Temperature dependence of the elastic moduli and damping for polycrystalline LiF-22% CaF2 eutectic salt. J Mater Sci 26, 1793–1798 (1991). https://doi.org/10.1007/BF00543604

Download citation


  • Migration
  • Activation Energy
  • Elastic Modulus
  • Shear Modulus
  • Theoretical Calculation