Skip to main content
Log in

Relationship between structure and mechanical properties for aramid fibres

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The relationship between structure and mechanical properties for a series of twelve wellcharacterized aramid fibres has been determined. The fibres were produced under a variety of processing conditions and the fibre structure has been characterized using transmission electron microscopy. In particular, both the overall degree of molecular orientation in the fibres and the difference in structure between the fibre skin and core regions have been investigated in detail. The mechanical properties of the fibres have been evaluated using conventional mechanical testing and molecular deformation followed using Raman microscopy to monitor strain-induced band shifts. It has been shown that the mechanical properties of the fibres are controlled by the fibre structure. In particular, it is shown that the fibre modulus is governed by the overall degree of molecular orientation. It is also demonstrated that the fibre strength is controlled principally by the overall molecular orientation but may also be reduced by the presence of a highly-oriented skin region. It has been found that the rate of shift of the Raman bands per unit strain is proportional to the fibre modulus except for fibres with large differences in molecular orientation between fibre skin and core regions. For these fibres the rate of shift reflects the higher orientation of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Schaefgen, in “Strength and Stiffness of Polymers”, edited by A. E. Zachariades and R. S. Porter (Marcel Dekker, New York) 339 pp.

  2. H. H. Yang, “Aromatic High-Strength Fibres” (Wiley, New York, 1989).

    Google Scholar 

  3. M.G. Dobb and R. M. Robson, J. Mater. Sci. 25 (1990) 459.

    Article  CAS  Google Scholar 

  4. S. Van Der Zwagg, M. G. Northolt, R. J. Young, I. M. Robinson, C. Galiotis and D. N. Batchelder, Polym. Commun. 28 (1987) 276.

    Google Scholar 

  5. R. J. Young, D. Lu. and R. J. Day, Polym. Int. 24 (1991) 71.

    Article  CAS  Google Scholar 

  6. K. Prasad and D. T. Grubb, J. Polym. Sci. Polym. Phys. Ed. 27 (1989) 381.

    Article  CAS  Google Scholar 

  7. R. J. Day, I. M. Robinson, M. Zakikhani and R. J. Young, Polymer 28 (1987) 1833.

    Article  CAS  Google Scholar 

  8. R. J. Young, R. J. Day and M. Zakikhani, J. Mater. Sci. 25 (1990) 127.

    Article  CAS  Google Scholar 

  9. R. J. Young and P. P. Ang, Polymer, 31 (1990) 47.

    Article  CAS  Google Scholar 

  10. I. M. Robinson, M. Zakikhani, R. J., Day, R. J. Young and C. Galiotis, J. Mater. Sci. Lett. 6 (1987) 1212.

    Article  CAS  Google Scholar 

  11. L. J. Fina, D. I. Bower and I. M. Ward, Polymer 29 (1988) 2146.

    Article  CAS  Google Scholar 

  12. W. F. Knoff, J. Mater. Sci. 22 (1987) 1024.

    Article  Google Scholar 

  13. L.-S. Li, L. F. Allard and W. C. Bigelow, J. Macromol. Sci. Phys. B22 (1983) 269.

    Article  CAS  Google Scholar 

  14. E. G. Chatzi, M. W. Urban and J. L. Koenig, Makromol. Chem. Makromol. Symp. 5 (1986) 99.

    Article  CAS  Google Scholar 

  15. H. H. Yang, M. P. Chouinard and W. J. Lingg, J. Appl. Polym. Sci. 34 (1987) 1399.

    Article  CAS  Google Scholar 

  16. A. M. Tiefenthaler and M. W. Urban, Appl. Spect. 42 (1988) 163.

    Article  CAS  Google Scholar 

  17. M. G. Northolt and J. J. Van Aartsen, J. Polym. Sci. Polym. Symp. 58 (1977) 283.

    Article  CAS  Google Scholar 

  18. M. G. Northolt, Polymer 21 (1980) 1199.

    Article  CAS  Google Scholar 

  19. M. G. Northolt, and R. Van Der Hout, ibid. 26 (1985) 310.

    Article  CAS  Google Scholar 

  20. S. R. Allen and E. J. Roche, ibid. 30 (1990) 996.

    Article  Google Scholar 

  21. M. G. Northolt and D. J. Sikkema, Advances in Polymer Science 98 (1990) 119.

    Google Scholar 

  22. R. J. Gaymans, J. Tijssen, S. Harkema and A. BanTjes, Polymer 17 (1976) 517.

    Article  CAS  Google Scholar 

  23. R. Barton, J. Macromol. Sci. B24 (1985) 119.

    Article  CAS  Google Scholar 

  24. G. S. Fielding-Russell, Tex. Res. J. 41 (1971) 861.

    CAS  Google Scholar 

  25. K. Tashiro, M. Kobayashi and H. Tadokoro, Macromolecules 10 (1977) 413.

    Article  CAS  Google Scholar 

  26. H. Kooijman, L. M. J. Kroon-Batenburg and M. G. Northolt, to be published.

  27. W. F. Knoff, J. Mater. Sci. Lett. 6 (1987) 1392.

    Article  CAS  Google Scholar 

  28. A. Kelly and N. W. Macmillan, “Strong Solids”, 3rd Edn. (Oxford University Press, Oxford, 1986).

    Google Scholar 

  29. J. W. S. Hearle, P. Grosberg and S. Backer, “Structural Mechanics of Fibres, Yarns and Fabrics” (Wiley-Inter-science, New York, 1969) p. 213.

    Google Scholar 

  30. G. S. Holister and C. Thomas, “Fibre-reinforced Materials” (Elsevier, London, 1966) p. 213.

    Google Scholar 

  31. P. Smith and Y. Termonia, Polymer Commun. 30 (1989) 66.

    CAS  Google Scholar 

  32. D. Lu and R. J. Young, unpublished data (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, R.J., Lu, D., Day, R.J. et al. Relationship between structure and mechanical properties for aramid fibres. J Mater Sci 27, 5431–5440 (1992). https://doi.org/10.1007/BF00541602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541602

Keywords

Navigation