Pulsed laser treatment of plasma-sprayed thermal barrier coatings: effect of pulse duration and energy input


Pulsed laser treatments of plasma-sprayed thermal barrier coatings can provide good corrosion resistance of protected components without impairing thermal fatigue resistance of the ceramic layers. Laser treatments are performed over a wide range of pulse durations and energy inputs, and their effects on microstructure, crystalline grain size and chemical composition of the remelted thin upper layer are investigated. Particular attention is given to macro and microcracking originating on the surface, gas bubble motion inside the melted layer and consequent surface crater formation. Density, shape, dimension and distribution of craters in the laser-irradiated zone are correlated with pulse duration and energy input of the laser beam. A numerical simulation of temperature distributions and heat phenomena originating in the ceramic coating during laser irradiation is presented, in order to explain the influence of laser characteristics on the quality of the coating surface.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. J. Brindley and R. A. Miller, Adv. Mater. Proc. 8 (1989) 29.

    Google Scholar 

  2. 2.

    J. W. Fairbanks and R. J. Hecht, Mater. Sci. Engng 88 (1987) 321.

    CAS  Article  Google Scholar 

  3. 3.

    T. N. Rhys-Jones and F. C. Toriz, High Temp. Tech. 7 (2) (1989) 73.

    CAS  Article  Google Scholar 

  4. 4.

    M. H. Van De Voorde, M. G. Hocking and V. Vasantasree, High Temp. Mater. Proc. 7 (2–3) (1986) 107.

    Article  Google Scholar 

  5. 5.

    A. S. Grot and J. K. Martyn, Ceram. Bull. 60 (8) (1981) 807.

    CAS  Google Scholar 

  6. 6.

    B. C. Wu, E. Chang, S. F. Chang and D. Tu, J. Amer. Ceram. Soc. 72 (2) (1989) 212.

    CAS  Article  Google Scholar 

  7. 7.

    A. Bennet, Mater. Sci. Tech. 2 (1986) 257.

    Article  Google Scholar 

  8. 8.

    J. H. Zaat, Ann. Rev. Mater. Sci. 13 (1983) 9.

    CAS  Article  Google Scholar 

  9. 9.

    S. Sturlese, R. Dal Maschio, C. Bartuli, N. Zacchetti and M. Berardo, in “High Performance Films and Coatings”, edited by P. Vincenzini (Elsevier Science, B.V., 1991) p. 353.

  10. 10.

    K. D. Sheffler, R. A. Graziani and G. C. Sinko, NASA CR-167964 (1982).

  11. 11.

    R. A. Miller and C. E. Lowell, Thin Solid Films 95 (1982) 265.

    CAS  Article  Google Scholar 

  12. 12.

    R. Sivakumar and M. P. Srivatava, Oxid. Metals. 20 (3–4) (1983) 67.

    CAS  Article  Google Scholar 

  13. 13.

    F. S. Galasso and V. Vettry, Ceram. Bull 62 (2) (1983) 253.

    CAS  Google Scholar 

  14. 14.

    I. Zaplatinsky, Thin Solid Films 95 (3) (1982) 275.

    Article  Google Scholar 

  15. 15.

    T. Arahari, T. Suzuki, N. Iwamoto, N. Umesaki, Adv. Ceram. 24A (1988) 549.

    Google Scholar 

  16. 16.

    A. Adamski and R. McPherson, in “Advances in Thermal Spraying” (Pergamon, Oxford, 1986), p. 555.

    Book  Google Scholar 

  17. 17.

    M. Havrda, K. Volenik, J. Wagner and P. Mraz, ibid.in “, p. 569.

    Book  Google Scholar 

  18. 18.

    N. Iwamoto, N. Umesaki and S. Endo, ibid. p. 563.

    Book  Google Scholar 

  19. 19.

    R. A. Miller and C. C. Berndt, Thin Solid Films 119 (1984) 195.

    CAS  Article  Google Scholar 

  20. 20.

    R. Sivakumar and B. L. Mordike, Surf. Engng 4 (2) (1988) 127.

    CAS  Article  Google Scholar 

  21. 21.

    A. A. Uglov, V. A. Grebennikov, I. Yu. Smurov and V. G. Panaetov, Phis. Khim. Obratotki Mater. 3 (1988) 125.

    Google Scholar 

  22. 22.

    A. A. Uglov, I. Yu. Smurov, A. M. Lashin and A. G. Guskov, “Heat processes of pulse laser treatments of metals” (Nauka, Moskow) in press.

  23. 23.

    N. Rykalin, A. Uglov, I. Zuev and A. Kokora, “Laser and electron beam materials processing” (Mir, Moscow, 1988).

    Google Scholar 

  24. 24.

    A. Lashin, I. Smurov, A. Uglov, P. Matteazzi and V. Tagliaferri, Heat Tech. 7 (2) (1989) 60.

    CAS  Google Scholar 

  25. 25.

    I. Yu. Smurov and A. M. Lashin, in “Physico-chemical processes in materials treatment by concentrated energy flows” (Nauka, Moscow 1989) p. 160.

    Google Scholar 

  26. 26.

    L. Pawlowski, D. Lombard and P. Fauchais, J. Vac. Sci. Technol. A3 (1985) 2494.

    Article  Google Scholar 

  27. 27.

    V. P. Ageev, S. T. Burdin and I. N. Goncharov, Sci. Technol. Rev. Radiotekhnika 31 (1983) 160.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smurov, I., Uglov, A., Krivonogov, Y. et al. Pulsed laser treatment of plasma-sprayed thermal barrier coatings: effect of pulse duration and energy input. J Mater Sci 27, 4523–4530 (1992). https://doi.org/10.1007/BF00541589

Download citation


  • Corrosion Resistance
  • Pulse Duration
  • Energy Input
  • Ceramic Coating
  • Thermal Fatigue