Constant heating rate analysis of simultaneous sintering mechanisms in alumina

Abstract

Constant heating rate sintering experiments were conducted on a submicron alumina powder during the initial stage. Shrinkage was measured by precision dilatometry and surface area reduction was monitored with gas adsorption measurements. Furthermore, grain size and pore size results were collected using X-ray line broadening and mercury porosimetry. Analysis of the shrinkage and surface area reduction data showed excellent correlation with a computer simulation based on simultaneous surface diffusion and grain boundary diffusion mechanisms. A comparison of the simulated and the experimental sintering paths on a plot of surface area reduction versus shrinkage indicated the combination of mechanisms and activations energies which best describe this sintering behaviour. From this analysis the estimated activation energies for grain boundary and surface diffusion are 440 and 508 kJ mol−1, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. E. Exner, Revs. Powder Met. Phys. Ceram. 1 (1979) 7.

    Google Scholar 

  2. 2.

    K. S. Hwang and R. M. German, in “Sintering and heterogeneous catalysis”, edited by G. C. Kuczynski, A. E. Miller and G. A. Sargent (Plenum Press, New York, NY, 1984) p. 35.

    Google Scholar 

  3. 3.

    F. A. Nichols and W. W. Mullins, J. Appl. Phys. 36 (1965) 1826.

    Article  Google Scholar 

  4. 4.

    R. M. German and J. F. Lathrop, J. Mater. Sci. 13 (1978) 921.

    Article  Google Scholar 

  5. 5.

    D. L. Johnson, J. Appl. Phys. 40 (1969) 192.

    CAS  Article  Google Scholar 

  6. 6.

    H. E. Exner and P. Bross, Acta Met. 27 (1979) 1007.

    Article  Google Scholar 

  7. 7.

    P. Bross and H. E. Exner, ibid. 27 (1979) 1013.

    Article  Google Scholar 

  8. 8.

    J. W. Ross, W. A. Miller and G. C. Weatherly, Z. Metallkde. 73 (1982) 391.

    CAS  Google Scholar 

  9. 9.

    K. Breitkreutz and D. Amthor, Metall. 29 (1975) 990.

    Google Scholar 

  10. 10.

    R. M. German, Scripta Met. 14 (1980) 955.

    Article  Google Scholar 

  11. 11.

    H. E. Exner, in “Sintering '87”, Vol. 1, edited by S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe (Elsevier, London, 1988) p. 291.

    Google Scholar 

  12. 12.

    R. M. German, Powder Met. 22 (1979) 29.

    CAS  Article  Google Scholar 

  13. 13.

    D. L. Johnson and I. B. Cutler, J. Amer. Ceram. Soc. 46 (1963) 545.

    CAS  Article  Google Scholar 

  14. 14.

    K. Asaga and K. Hamano, Yogyo-Kyokai-Shi 83 (1975) 40.

    Article  Google Scholar 

  15. 15.

    D. L. Johnson, in “Kinetics of reactions in ionic systems”, edited by T. J. Gray and V. D. Frechette (Plenum Press, New York, NY, 1969) p. 331.

    Google Scholar 

  16. 16.

    W. R. Rao and I. B. Cutler, J. Amer. Ceram. Soc. 56 (1973) 588.

    CAS  Article  Google Scholar 

  17. 17.

    Idem., ibid. 55 (1972) 170.

    CAS  Article  Google Scholar 

  18. 18.

    R. L. Coble, ibid. 41 (1958) 55.

    CAS  Article  Google Scholar 

  19. 19.

    T. L. Wilson and P. G. Shewmon, Trans. TMS-AIME 236 (1966) 48.

    CAS  Google Scholar 

  20. 20.

    C. Greskovich and K. W. Lay, J. Amer. Ceram. Soc. 55 (1972) 142.

    CAS  Article  Google Scholar 

  21. 21.

    S. Prochazka and R. L. Coble, Phys. Sintering 2 [2] (1970) 15.

    CAS  Google Scholar 

  22. 22.

    R. M. German and Z. A. Munir, in “Sintering and catalysis”, edited by G. C. Kuczynski (Plenum Press, New York, NY, 1975) p. 259.

    Google Scholar 

  23. 23.

    R. M. German, Powder Tech. 17 (1977) 287.

    CAS  Article  Google Scholar 

  24. 24.

    R. F. Walker, J. Amer. Ceram. Soc. 38 (1955) 187.

    Article  Google Scholar 

  25. 25.

    G. C. Kuczynski, L. Abernethy and J. Allen, in “Kinetics of high temperatures processes”, edited by W. D. Kingery (John Wiley, New York, NY, 1959) p. 163.

    Google Scholar 

  26. 26.

    R. L. Coble, J. Amer. Ceram. Soc. 45 (1962) 123.

    CAS  Article  Google Scholar 

  27. 27.

    F. W. Dynys and J. W. Halloran, ibid. 67 (1984) 596.

    CAS  Article  Google Scholar 

  28. 28.

    E. L. Kemer and D. L. Johnson, Ceramic Bull. 64 (1985) 1132.

    CAS  Google Scholar 

  29. 29.

    J. P. Smith and G. L. Messing, J. Amer. Ceram. Soc. 67 (1984) 238.

    CAS  Article  Google Scholar 

  30. 30.

    T. S. Yeh and M. D. Sacks, ibid. 71 (1988) 841.

    CAS  Article  Google Scholar 

  31. 31.

    J. Zheng and J. S. Reed, ibid. 72 (1988) 810.

    Article  Google Scholar 

  32. 32.

    W. S. Young and I. B. Cutler, ibid. 53 (1970) 659.

    CAS  Article  Google Scholar 

  33. 33.

    J. L. Woolfrey and M. J. Bannister, ibid. 55 (1972) 390.

    CAS  Article  Google Scholar 

  34. 34.

    J. J. Bacmann and G. Cizeron, ibid. 51 (1968) 209.

    CAS  Article  Google Scholar 

  35. 35.

    T. S. Wei and R. M. German, in “Modern developments in powder metallurgy”, Vol. 15, edited by E. N. Aqua and C. I. Whitman (Metal Powder Industries Federation, Princeton, NJ, 1985) p. 307.

    Google Scholar 

  36. 36.

    D. B. Cullity, in “Elements of X-ray diffraction” (Addison-Wesley, Reading, MA, 1978) p. 102.

    Google Scholar 

  37. 37.

    T. S. Wei, PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY (1987).

    Google Scholar 

  38. 38.

    R. M. German and Z. A. Munir, J. Amer. Ceram. Soc. 59 (1976) 379.

    CAS  Article  Google Scholar 

  39. 39.

    H. J. Frost and M. F. Ashby, in “Deformation-mechanism maps” (Pergamon Press, Oxford, UK, 1982) p. 98.

    Google Scholar 

  40. 40.

    A. E. Paladino and W. D. Kingery, J. Chem. Phys. 37 (1962) 957.

    CAS  Article  Google Scholar 

  41. 41.

    R. M. Cannon and R. L. Coble, in “Deformation of ceramic materials” (Plenum Press, New York, NY, 1975) p. 61.

    Book  Google Scholar 

  42. 42.

    W. M. Robertson and F. E. Ekstrom, in “Kinetics of reactions in ionic systems”, edited by T. J. Gray and V. D. Frechette (Plenum Press, New York, NY, 1969) p. 273.

    Google Scholar 

  43. 43.

    J. Wang and R. Raj, J. Amer. Ceram. Soc. 73 (1990) 1172.

    CAS  Article  Google Scholar 

  44. 44.

    R. M. German, in “Particle Packing Characteristics” (Metal Powder Industries Federation, Princeton, NJ, 1988) p. 90.

    Google Scholar 

  45. 45.

    O. J. Whittemore and J. A. Varela, in “Sintering Processes”, edited by G. C. Kuczynski (Plenum Press, New York, NY, 1980) p. 51.

    Google Scholar 

  46. 46.

    K. S. Hwang, PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY (1984).

    Google Scholar 

  47. 47.

    M. F. Ashby, Acta Met. 22 (1974) 275.

    CAS  Article  Google Scholar 

  48. 48.

    F. B. Swinkels and M. F. Ashby, ibid. 29 (1981) 259.

    CAS  Article  Google Scholar 

  49. 49.

    L. L. Berrin and D. L. Johnson, in “Sintering and related phenomena”, edited by G. C. Kuczynski, N. A. Hooton and C. F. Gibbon (Gordon and Breach, New York, NY, 1967) p. 369.

    Google Scholar 

  50. 50.

    C. F. Yen and R. L. Coble, J. Amer. Ceram. Soc. 55 (1972) 187.

    Article  Google Scholar 

  51. 51.

    T. Maruyama and W. Komatsu, ibid. 58 (1975) 338.

    CAS  Article  Google Scholar 

  52. 52.

    K. Kitazawa and R. L. Coble, ibid. 51 (1974) 250.

    Article  Google Scholar 

  53. 53.

    S. I. Warshaw and F. H. Norton, ibid. 45 (1962) 479.

    CAS  Article  Google Scholar 

  54. 54.

    Y. Oishi and W. D. Kingery, J. Chem. Phys. 33 (1960) 480.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hillman, S.H., German, R.M. Constant heating rate analysis of simultaneous sintering mechanisms in alumina. J Mater Sci 27, 2641–2648 (1992). https://doi.org/10.1007/BF00540683

Download citation

Keywords

  • Activation Energy
  • Shrinkage
  • Surface Diffusion
  • Dilatometry
  • Alumina Powder