Advertisement

Chemistry of Heterocyclic Compounds

, Volume 29, Issue 8, pp 945–948 | Cite as

Synthesis of a new potential antiviral agent — 9-allyloxymethylguanine

  • A. A. Ozerov
  • A. K. Brel'
Article
  • 49 Downloads

Abstract

A convenient method has been developed for the synthesis of 9-allyloxymethylguanine. The direct alkylation of the trimethylsilyl derivative of guanine allyloxymethyl chloride gives a 64% yield of 9- and 7-allyloxymethylguanine (3∶1). A mixture of 9- and 7-allyloxymethyl-N-acetylguanine (7∶4) can be obtained in 56% yield by the condensation of diacetylguanine with allyloxymethyl acetate in dimethyl sulfoxide in the presences of p-toluenesulfonic acid.

Keywords

Acetate Chloride Organic Chemistry Dimethyl Sulfoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Schaeffer, L. Beauchamp, P. De Miranda, G. B. Elion, D. L. Bauer, and P. Collins, Nature, 272, 583 (1978).Google Scholar
  2. 2.
    Y.-C. Cheng, S. P. Grill, G. E. Dutschman, K. Nakayama, and K. F. Bastow, J. Biol. Chem., 258, 12460 (1983).Google Scholar
  3. 3.
    A. Larsson and P.-Z. Tao, Antimicrob. Agents Chemother., 25, 524 (1984).Google Scholar
  4. 4.
    J. D. Karkas, W. T. Ashton, L. F. Canning, R. Liou, J. Germershausen, R. Bostedor, B. Arison, A. K. Field, and R. L. Tolman, J. Med. Chem., 29, 842 (1986).Google Scholar
  5. 5.
    G. Abele, B. Eriksson, J. Harmenberg, and B. Wahren, Antimicrob. Agents Chemother., 32, 1137 (1988).Google Scholar
  6. 6.
    A. A. Ozerov, M. S. Novikov, A. K. Brel', O. T. Andreeva, G. V. Vladyko, E. I. Boreko, L. V. Korobchenko, and S. G. Vervetchenko, Khim.-Farm. Zh., 25, 44 (1991).Google Scholar
  7. 7.
    J. C. Martin, C. A. Dvorak, D. F. Smee, T. R. Matthews, and J. P. H. Verheyden, J. Med. Chem., 26, 759 (1983).Google Scholar
  8. 8.
    W. T. Ashton, L. F. Canning, G. F. Reynolds, R. L. Tolman, J. D. Karkas, R. Liou, M.-E. M. Davies, C. M. De Witt, H. C. Perry, and A. K. Field, J. Med. Chem., 28, 926 (1985).Google Scholar
  9. 9.
    H. Matsumoto, C. Kaneko, K. Yamada, T. Takeuchi, T. Mori, and Y. Mizuno, Chem. Pharm. Bull., 36, 1153 (1988).Google Scholar
  10. 10.
    J. C. Martin, D. C. P. McGee, G. A. Jeffrey, D. W. Hobbs, D. F. Smee, T. R. Matthews, and J. P. H. Verheyden, J. Med. Chem., 29, 1384 (1986).Google Scholar
  11. 11.
    Yu. V. Pokonova, Chemistry and Technology of Halogenoethers [in Russian], Leningrad University, Leningrad (1982).Google Scholar
  12. 12.
    Kh. A. Khazhoka and V. D. Shatts, Khim.-Farm. Zh., 23, 1516 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. A. Ozerov
    • 1
  • A. K. Brel'
    • 1
  1. 1.Scientific-Research Institute of Pharmacology at Volgograd Medical Institute MZ RFVolgograd

Personalised recommendations