Advertisement

Chemistry of Heterocyclic Compounds

, Volume 29, Issue 8, pp 926–931 | Cite as

Synthesis and X-ray diffraction and quantum-chemical analysis of 1-allyl-3-formylpyridinium bromide thiosemicarbazone

  • N. P. Erchak
  • V. Ya. Ryabova
  • A. A. Kemme
  • S. V. Belyakov
Article
  • 27 Downloads

Abstract

Successive alkylation of 3-pyridinecarboxaldehyde with allyl bromide and reaction of 1-allyl-3-formylpyridinium bromide with thiosemicarbazide gave 1-allyl-3-formylpyridinium bromide semicarbazone. X-ray diffraction analysis and quantum-chemical calculations with optimization of geometry were conducted on the semicarbazone synthesized. It was shown that quaternization of the nitrogen atom did not have any effect on the planarity of the heterocycle and the cationic charge was mainly localized on the thiosemicarbazone group, in which intramolecular hydrogen bonding is absent, despite the small interatomic separation of N...H-N.

Keywords

Hydrogen Bonding Bromide Nitrogen Atom Alkylation Diffraction Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Mashkovskii, Drugs [in Russian], Meditsina, Moscow (1986), Vol. 1, p. 576; (1987), Vol. 2, p. 624.Google Scholar
  2. 2.
    M. Negwer, Organic Chemical Drugs and Their Synonyms (An Internal Survey), Akad. Verlag, Berlin (1987), Vol. 1, p. 816; Vol. 2, p. 817; Vol. 3, p. 1655.Google Scholar
  3. 3.
    Yu. B. Fillipovich, Principles of Biochemistry [in Russian], Vysshaya Shkola, Moscow (1985), p. 503.Google Scholar
  4. 4.
    J. R. Cannon, J. S. Edmonds, K. A. Francesconi, C. L. Raston, J. B. Saunders, B. W. Skelton, and A. H. White, Austral. J. Chem., 34, 787 (1981).Google Scholar
  5. 5.
    R. Restivo and G. J. Palenik, Acta Cryst., B26, 1397 (1970).Google Scholar
  6. 6.
    G. J. Palenik, D. F. Rendle, and W. S. Carter, Acta Cryst., B30, 2390 (1974).Google Scholar
  7. 7.
    J. N. Brown, Acta Cryst., B34, 2038 (1978).Google Scholar
  8. 8.
    M. F. Carter, G. N. Kaman, and J. F. Rusling, J. Electroanal. Chem., 170, No. 2, 265 (1984).Google Scholar
  9. 9.
    A. Conde, A. Lopez-Castro, and R. Marquez, Acta Cryst., B28, 3464 (1972).Google Scholar
  10. 10.
    M. Martinez-Ripoll and H. P. Lorenz, Acta Cryst., B32, 2322 (1976).Google Scholar
  11. 11.
    F. Takusagawa, K. Hirotsu, and A. Shimada, Bull. Chem. Soc. Jpn., 46, 2669 (1973).Google Scholar
  12. 12.
    M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).Google Scholar
  13. 13.
    R. S. Mulliken, J. Chem. Phys., 23, 1883 (1955).Google Scholar
  14. 14.
    G. M. Sheldrick, Crystallographic Computing 3, G. M. Sheldrick, C. Kruger, and R. Goddard (eds.), Oxford University Press (1985), p. 175.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • N. P. Erchak
    • 1
  • V. Ya. Ryabova
    • 1
  • A. A. Kemme
    • 1
  • S. V. Belyakov
    • 1
  1. 1.Latvian Institute of Organic SynthesisRiga

Personalised recommendations