Skip to main content
Log in

Molecular design of heterocycles. 2. “Structure-synthesis” magic rule in the synthesis of six-membered heteroaromatic rings (review)

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

This review deals with the frequency of occurrence of literature references to various types of reagents used in syntheses of the pyridine ring and a number of its heterocyclic analogs (classed as heteroalternant systems). It is shown that the nature of the terminal groups in the reagents, the parity of the chain of atoms between the terminal groups, and the position of the heteroatom are interrelated and are subject to “magic” rules (principles of alternation and heteroalternation). These rules can be interpreted within the frame of a new concept, “structure—synthesis,” based on preservation of the electrophilic-nucleophilic nature of the reagents in the heterolytic formation of even-membered rings. A complete classification of pyridine-ring syntheses that are allowed by the rules provides a means for predicting the polar type of reagents for the last unknown synthesis of pyridines of the type CNCCC+C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Babaev and N. S. Zefirov, Khim. Geterotsikl. Soedin., No. 6, 808 (1992).

    Google Scholar 

  2. G. R. Newkome and W. W. Paudler, Contemporary Heterocyciic Chemistry: Synthesis, Reactions and Applications, Wiley, New York (1982).

    Google Scholar 

  3. S. S. Nametkin, Heterocyclic Compounds [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  4. R. M. Acheson, An Introduction to the Chemistry of Heterocyclic Compounds, Wiley, New York (1977).

    Google Scholar 

  5. J. A. Joule and G. F. Smith, Heterocyclic Chemistry, Van Nostrand, New York (1972).

    Google Scholar 

  6. A. Albert, Heterocyclic Chemistry: An Introduction, Athlone, London (1968).

    Google Scholar 

  7. A. R. Katritzky and J. M. Lagowski, Heterocyclic Chemistry, Wiley, New York (1960).

    Google Scholar 

  8. L. A. Paquette, Principles of Modern Heterocyclic Chemistry, Benjamin-Cummings, New York (1968).

    Google Scholar 

  9. A. R. Katritzky and C. W. Rees (eds.), Comprehensive Heterocyclic Chemistry, Vols. 1–8, Pergamon Press, Oxford (1984), 1–8.

    Google Scholar 

  10. D. Barton and W. D. Ollis (eds.), Comprehensive Organic Chemistry, Vol. 4, Heterocyclic Compounds, Pergamon Press, Oxford (1979).

    Google Scholar 

  11. R. C. Elderfield (ed.), Heterocyclic Compounds, Vols. 1–7, Wiley, New York (1950).

    Google Scholar 

  12. E. Rodd (ed.), Chemistry of Carbon Compounds, Vol. 4, Elsevier, Amsterdam (1957).

    Google Scholar 

  13. R. Anshutz (ed.), Richter-Anschutz Chemie der Kohlenstoffverbindungen, Vol. 3, Acad. Verlag Ges., Leipzig (1931).

    Google Scholar 

  14. R. P. Kreher (ed.), Houben-Weil Methoden der Organischen Chemie, Vol. E 7a (Hetarene II), Thieme Verlag, Stuttgart, New York (1991), No. 1.

    Google Scholar 

  15. E. V. Babaev and N. S. Zefirov, Bull. Soc. Chim. Belg., 101, 67 (1992).

    Google Scholar 

  16. E. V. Babaev, D. E. Lushnikov and N. S. Zefirov, J. Am. Chem. Soc., 115, 2416 (1993).

    Google Scholar 

  17. P. Barone and M. Chanon, in: Computer Aids to Chemistry, G. Vernin and M. Chanon (eds.) Halstead Press, New York (1986).

    Google Scholar 

  18. G. Jones, in: Quinolines, G. Jones (ed.) Part 1, Wiley, New York (1977), p. 93.

    Google Scholar 

  19. K. T. Potts, in: Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees (eds.) Vol. 5, Pergamon Press, Oxford (1984), p. 111.

    Google Scholar 

  20. A. McKillop and A. J. Boulton, in: Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees (eds.) Vol. 2, Pergamon Press, Oxford (1984), p. 67.

    Google Scholar 

  21. A. R. Katritzky, Handbook of Heterocyclic Chemistry (Comprehensive Heterocyclic Chemistry, Vol. 9), Pergamon Press, Oxford (1985), p. 382.

    Google Scholar 

  22. M. G. Bures and W. L. Jorgensen, J. Org. Chem., 53, 2504 (1988).

    Google Scholar 

  23. E. V. Babaev, Bull. Soc. Chim. Belg., 101, 823 (1992).

    Google Scholar 

  24. S. I. Bobrovskii, E. V. Babaev, and Yu. G. Bundel', Khim. Geterotsikl. Soedin., No. 2, 203 (1987).

    Google Scholar 

  25. G. Jones, in: Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees (eds.) Vol. 2, Pergamon Press, Oxford (1984), p. 395.

    Google Scholar 

  26. D. M. Smith, in: Comprehensive Organic Chemistry, D. Barton and W. D. Ollis (eds.) Vol. 4, Heterocyclic Compounds, Pergamon Press, Oxford (1979), p. 3.

    Google Scholar 

  27. H. S. Mosher, in: Heterocyclic Compounds, R. C. Elderfield (ed.) Vol. 1, Wiley, New York (1950).

    Google Scholar 

  28. N. Campbell, in: Chemistry of Carbon Compounds, E. Rodd (ed.) Vol. 4A, Elsevier, Amsterdam (1957), p. 488.

    Google Scholar 

  29. H. Maier-Bode and J. Altpeter, Das Pyridine und seine Derivate in Wissenschaft und Technik, W. Knapp Verlag, Halle (1934).

    Google Scholar 

  30. Yu. I. Chumakov, Pyridine Bases [in Russian], Kiev, Tekhnika (1965).

    Google Scholar 

  31. K. Schofield, Heteroaromatic Nitrogen Compounds: Pyrroles and Pyridines, Butterworths, London (1967).

    Google Scholar 

  32. F. Brody and R. Ruby, in: Pyridine and Its Derivatives, Part 1, E. Klingsberg (ed.) Interscience, New York (1960), p. 99.

    Google Scholar 

  33. N. S. Boodman, J. O. Hawthorne, P. X. Maskiantonio, and A. W. Simon, Pyridine and Its Derivatives, Supplement, Part 1, R. Abramovich (ed.) Interscience, New York (1974), p. 185.

    Google Scholar 

  34. G. R. Newkome (ed.), Pyridine and Its Derivatives, Supplement, Part 5, Interscience, New York (1984).

    Google Scholar 

  35. M. A. Yurovskaya and A. Z. Afanas'ev, Khim. Geterosikl. Soedin., No. 7, 867 (1991).

    Google Scholar 

  36. V. L. Rusinov and O. N. Chupakhin, Nitroazines [in Russian], Nauka (Siberian Branch), Novosibirsk (1991).

    Google Scholar 

  37. E. V. Babaev and S. I. Tsitovskii, Vestn. Mosk. Gos. Univ., Ser. 2, Khim., in press.

  38. F. Krohnke, Angew. Chem., 65, 605 (1953).

    Google Scholar 

  39. J. Thesing and A. Muller, Chem. Ber., 90, 711 (1957).

    Google Scholar 

  40. R. Gompper and R. Sobota, Angew. Chem., 90, 808 (1978).

    Google Scholar 

  41. U.S. Pat. 2,680,743, P. G. Stevens to General Aniline and Film Corp., Chem. Abstr., 49, 6315 (1955).

  42. A. Garming, D. Kern, G. Cohausz, G. Hillert, P. Gelbke, and D. Severin, Liebigs Ann. Chem., 1822 (1977).

  43. A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York (1961).

    Google Scholar 

  44. J. E. Baldwin, J. Chem. Soc., Chem. Commun., 734 (1976).

  45. J. D. Baty, G. Jones, and C. Moore, J. Chem. Soc. C, 2645 (1967).

  46. E. A. Prill and C. M. McElvain, J. Am. Chem. Soc., 55, 1233 (1933).

    Google Scholar 

  47. A. Cohen, J. W. Haworth, and E. G. Hughes, J. Chem. Soc., 4, 4374 (1952).

    Google Scholar 

  48. M. I. Farberov, V. V. Antonova, B. F. Ustavshchikov, and N. A. Titova, Khim. Geterotsikl. Soedin., No. 12, 1587 (1975).

    Google Scholar 

  49. K. V. Vatsuro and G. A. Mishchenko, Name Reactions in Organic Chemistry [in Russian], Khimiya, Moscow (1976).

    Google Scholar 

  50. A. R. Surrey, Name Reactions in Organic Chemistry, Academic Press, New York (1954).

    Google Scholar 

  51. H. Feuer, G. B. Bachman, and W. May, J. Am. Chem. Soc., 76, 5124 (1954).

    Google Scholar 

  52. F. Feist, Ber., 35, 1545 (1902).

    Google Scholar 

  53. K. D. Gunderman and H. U. Alles, Chem. Ber., 102, 3014 (1969).

    Google Scholar 

  54. P. Molina, C. Conesa, and M. D. Velasko, Tetrahedron Lett., 34, 175 (1993).

    Google Scholar 

  55. P. Molina, M. J. Vilaplana, and A. Pastor, Synlett., 11, 873 (1992).

    Google Scholar 

  56. P. Molina, A. Lorenzo, and E. Aller, Tetrahedron, 48, 4601 (1992).

    Google Scholar 

  57. T. J. Kametani, K. Fukumoto, in: Isoquinolines, G. Grethe (ed.), Part 1, Wiley, New York (1981), p. 139.

    Google Scholar 

  58. R. I. Fryer, J. V. Early, and W. Zally, J. Heterocycl. Chem., 4, 149 (1967).

    Google Scholar 

  59. R. R. Bard and M. G. Strauss, J. Org. Chem., 42, 435 (1977).

    Google Scholar 

  60. W. Borsche and A. Herbert, Liebigs Ann. Chem., 546, 293 (1941).

    Google Scholar 

  61. H. E. Baumgarten and M. R. DeBrunner, J. Am. Chem. Soc., 76, 3489 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is dedicated to Prof. A. R. Katritsky on the occasion of his 65th birthday.

See [1] for Communication 1.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, 937–961, July, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babaev, E.V. Molecular design of heterocycles. 2. “Structure-synthesis” magic rule in the synthesis of six-membered heteroaromatic rings (review). Chem Heterocycl Compd 29, 796–817 (1993). https://doi.org/10.1007/BF00528890

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00528890

Keywords

Navigation