Advertisement

Chemistry of Heterocyclic Compounds

, Volume 19, Issue 2, pp 187–193 | Cite as

Investigation of the three-dimensional structures of a number of N-substituted derivatives of 4-decahydroquinolone by means of 13C NMR spectroscopy

  • I. F. Leshcheva
  • N. M. Sergeev
  • G. V. Grishina
  • V. M. Potapov
Article
  • 23 Downloads

Abstract

The three-dimensional structures and eonformational compositions of a number of N-substituted 4-decahydroquinolones, particularly the 1-(S)-α-phenylethyl-4-deca-hydroquinolone isomer that is primarily formed in the asymmetric hydride reduction of 1-(S)-α-phenylethyl-Δ9,10-octahydro-4-quinolone and was previously assigned to the trans series on the basis of chiral-optical properties, were investigated by 13C NMR spectroscopy. It is shown by means of NMR data that this compound belongs to the cis series. The lines in the 13C-{1H} NMR spectra of a number of 4-decahydroquinolones were assigned by means of an additive scheme for the 13C chemical shifts, and criteria of the type of fusion of the two rings in the investigated class of heterocyclic compounds were established.

Keywords

Spectroscopy Organic Chemistry Chemical Shift Hydride Heterocyclic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. M. Potapov, G. V. Kiryushkina, and G. V. Tokmakov, Khim. Geterotsikl. Soedin., No. 12, 1656 (1972).Google Scholar
  2. 2.
    E. L. Eliel and K. M. Petrusiewich, Topics in 13C NMR Spectroscopy, Vol. 3 (1979), p. 172.Google Scholar
  3. 3.
    F. Wehrli and T. Wirthlin, Interpretation of 13 C NMR Spectra, Heyden, London (1976).Google Scholar
  4. 4.
    G. V. Grishina, I. F. Leshcheva, N. M. Sergeev, V. M. Potapov, and A. I. Vovk, Khim. Gerotsikl.Soedin., No. 6, 780 (1982).Google Scholar
  5. 5.
    E. L. Eliel and F. W. Vierhapper, J. Org. Chem., 41, 199 (1977).Google Scholar
  6. 6.
    E. L. Eliel and F. W. Vierhapper, J. Org. Chem., 42, 51 (1977).Google Scholar
  7. 7.
    H. Booth and D. V. Griffith, J. Chem. Soc., Perkin Trans. II, No. 6, 842 (1973).Google Scholar
  8. 8.
    É. A. Mistryukov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk. No. 5, 929 (1963).Google Scholar
  9. 9.
    C. A. Grob and H. J. Lutz, Helv. Chim. Acta, 48, 791 (1965).Google Scholar
  10. 10.
    J. H. Grover and J. B. Stothers, Can. J. Chem., 52, 870 (1974).Google Scholar
  11. 11.
    D. Dalling and D. M. Grant, J. Am. Chem. Soc., 95, 3718 (1973).Google Scholar
  12. 12.
    J. W. Blunt, J. M. Coxon, N. Lindley, and G. C. Lone, Aust. J. Chem., 29, 967 (1976).Google Scholar
  13. 13.
    H. Booth, Prog. NMR Spectrosc., 5, 149 (1969).Google Scholar
  14. 14.
    T. Pehk, H. Kooskora, and E. Lippmaa, Org. Magn. Reson., 8, 5 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • I. F. Leshcheva
    • 1
  • N. M. Sergeev
    • 1
  • G. V. Grishina
    • 1
  • V. M. Potapov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscow

Personalised recommendations