Advertisement

Chemistry of Heterocyclic Compounds

, Volume 16, Issue 11, pp 1184–1186 | Cite as

Effect of the solvent on the 13C NMR spectra of pyrimidine nucleosides

  • É. L. Kupche
  • U. Ya. Mikstais
Article

Abstract

The 13C NMR spectra of uridine and cytidine in d6-DMSO, d7-DMF, d9-trimethyl phosphate, d4-methanol, d5-pyridine, and D2O were investigated. A linear correlation between the C1' chemical shifts and the J1' vicinal spin-spin coupling constants of the protons was established. From the experimental data it may be assumed that the chief reason for the effect of the solvent on the C1'2' chemical shift is the different contribution of the α effect of the base as a consequence of a change in the conformational equilibrium of the ribose ring. Deviations from the correlation in aqueous solutions and solutions of cytidine in pyridine are observed as a result of a change in the electron density in the base. The effect of the nature of the solvent on the position of the conformational equilibrium of the base relative to the glycoside bond was demonstrated.

Keywords

Pyridine Chemical Shift Glycoside Pyrimidine Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. B. Davies, Stud. Biophys., 55, 29 (1976).Google Scholar
  2. 2.
    S. Uesugi and M. Ikehara, J. Am. Chem. Soc., 99, 3250 (1977).Google Scholar
  3. 3.
    M. P. Schweizer, E. B. Banta, J. T. Witkowski, and R. K. Robins, J. Am, Chem, Soc., 95, 3770 (1973).Google Scholar
  4. 4.
    R. A. Komorski, I. R. Peat, and G. C. Levi, Topics in C-13 NMR Spectroscopy, Vol. 2 (1976), p. 244.Google Scholar
  5. 5.
    T. Schleich, B. P. Cross, B. J, Blackburn, and I, C. P. Smith, Conformations of Nucleic Acids. Protein-Nucleic Acid Interactions, Proceedings of the 4th Annual Harry Steenbock Symposium, 1974 (published in 1975), p. 223.Google Scholar
  6. 6.
    M. T. Chenon, P. J. Pungmire, D. M. Grant, R. P. Panzica, and L. B. Townsend, J. Am. Chem. Soc., 97 4636 (1975).Google Scholar
  7. 7.
    A. J. Jones, M. W. Winkley, D. M. Grant, and R. K. Robins, Proc. Natl. Acad. Sci. U. S., 65, 27 (1970).Google Scholar
  8. 8.
    H. H. Mantsh and I. C. P. Smith, Biochem. Biophys. Res. Commun., 46, 808 (1972).Google Scholar
  9. 9.
    A. R. Tarpley and I. H. Goldstein, J. Am. Chem. Soc., 93, 3573 (1971).Google Scholar
  10. 10.
    C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 95, 2333 (1973).Google Scholar
  11. 11.
    I. S. Shashkov and O. S. Chizhov, Bioorg. Khim., 2, 437 (1976).Google Scholar
  12. 12.
    M. R. Bacon and G. E. Maciel, J. Am. Chem. Soc., 95, 2426 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • É. L. Kupche
    • 1
  • U. Ya. Mikstais
    • 1
  1. 1.All-Union Scientific-Research Institute of Applied BiochemistryOlaine

Personalised recommendations