Chemistry of Heterocyclic Compounds

, Volume 16, Issue 11, pp 1115–1121 | Cite as

Effect of the reaction medium on the bromocyclization of maleic and fumaric acid monoureides

  • I. K. Yurgevitsa
  • É. L. Kupche


The monopotassium salt of maleic acid monoureide is brominated in water in the same way as the free acid, whereas the trans isomer is not brominated at all. Bromocyclization of the monopotassium salt of the cis isomer to give 5-(bromocarboxy-methyl)hydantoin and intramolecular cyclization to give 5-(carboxymethyl)hydantoin are realized at pH 4–6. erythro-2,3-Dibromosuccinic acid and 5-(bromo-carboxy-methyl)hydantoin are formed in the bromination of the monopotassium salt of fumaric acid monoureide at pH 4–6. Bromination of the methyl ester of maleic acid monoureide in 1,2-dichloroethane proceeds in the same way as bromination in water to give 2-amino-5-[bromo(methoxycarbonyl)methyl]oxazolid-4-one.


Methyl Ester Organic Chemistry Methyl Ester Reaction Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. K. Yurgevits, É. L. Kupche, and U. Ya. Mikstais, Khim. Geterotsikl. Soedin., No. 7, 972 (1979).Google Scholar
  2. 2.
    N. R. Easton, D. R. Cassady, and R. D. Dillard, J. Org. Chem., 29, 1851 (1964).Google Scholar
  3. 3.
    B. C. Challis and J. A. Challis, in: The Chemistry of Amides, edited by J. Zabicky, Wiley-Interscience, London-New York-Sydney-Toronto (1970), p. 734.Google Scholar
  4. 4.
    V. I. Staninets and E. A. Shilov, Usp. Khim., 40, 491 (1971).Google Scholar
  5. 5.
    G. L. Nelson, G. C. Levy, and J. D. Cargioli, J. Am. Chem. Soc., 94, 3089 (1972).Google Scholar
  6. 6.
    C. O'Murchu, Chimia, 29, 506 (1975).Google Scholar
  7. 7.
    A. Zschunke, Nuclear Magnetic Resonance in Organic Chemistry [Russian translation], Mir, Moscow (1974), p. 71.Google Scholar
  8. 8.
    A. R. M. Katritzky (editor), Physical Methods in the Chemistry of Heterocyclic Compounds, Academic Press (1963).Google Scholar
  9. 9.
    E. Schauenstein and G. M. Perko, Z. Electrochem., 58, 883 (1954).Google Scholar
  10. 10.
    W. A. Seth Paul and P. J. Demoen, Bull. Soc. Chim. Belges, 75, 524 (1966).Google Scholar
  11. 11.
    R. S. Lebedev and I. R. Lebedeva, Iz. Vyssh. Uchebn. Zaved., SSSR, Fiz., No. 8, 102 (1971).Google Scholar
  12. 12.
    M. J. Janssen, Spectrochim. Acta, 17, 475 (1961).Google Scholar
  13. 13.
    G. N. Dorofeenko, V. D. Karpenko, and Yu. I. Ryabukhin, Khim. Geterotsikl. Soedin., No. 5, 702 (1977).Google Scholar
  14. 14.
    G. Rapi, M. Ginanneschi, E. Belgodere, and M. Chelli, J. Heterocycl. Chem., 9, 285 (1972).Google Scholar
  15. 15.
    R. O. Kochkanyan, Yu. A. Israelyan, and A. N. Zaritovskii, Khim, Geterotsikl. Soedin., No. 1, 87 (1978).Google Scholar
  16. 16.
    W. Traube and R. Asher, Chem. Ber., 46, 2077 (1913).Google Scholar
  17. 17.
    C. O'Murchu, Chimia, 29, 508 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • I. K. Yurgevitsa
    • 1
  • É. L. Kupche
    • 1
  1. 1.All-Union Scientific-Research Institute of Applied BiochemistryOlaine

Personalised recommendations