Advertisement

Chemistry of Heterocyclic Compounds

, Volume 26, Issue 5, pp 544–551 | Cite as

Lactam and acid amide acetals 57. Synthesis, protonation, and acid-base properties of condensed derivatives of 4-oxo-1,4-dihydro-1,8-naphthyridine

  • L. T. Guss
  • L. S. Khabarova
  • L. V. Ershov
  • G. G. Dvoryantseva
  • N. N. Proshina
  • V. G. Granik
Article
  • 65 Downloads

Abstract

A number of 4-oxo-1,4-dihydro-1,8-naphthyridine derivatives that differ with respect to the sizes of the azaand carbocycles were synthesized by the reaction of 3-amino-4-ethoxycarbonyl-5,6-dihydro-7H-pyrindine and 3-amino-4-ethoxycarbonyl-5,6,7,8-tetrahydroisoquinoline with N,N-dimethylacetamide diethylacetal and N-methylbutyrolactam, N-methylvalerolactam, and N-methylcaprolactam diethylacetals and subsequent cyclization of the intermediate amidines. It was established by UV and 1H and 13C NMR spectroscopy that the protonation of these compounds takes place at the exocyclic oxygen atom. The dependence of the ionization constants of the compounds obtained in 70% DMFA on the size of the saturated cyclic fragments of the molecules was established.

Keywords

Oxygen Atom Amide Acetal Lactam Acid Amide DMFA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. N. Dozorova, S. I. Grizik, and V. G. Granik, Khim. Geterotsikl. Soedin., No. 1, 81 (1990).Google Scholar
  2. 2.
    V. G. Granik, Usp. Khim. 52, 669 (1983).Google Scholar
  3. 3.
    N. I. Smetskaya, N. A. Mukhina, and V. G. Granik, Khim. Geterotsikl. Soedin., No. 6, 799 (1984).Google Scholar
  4. 4.
    L. T. Guss, L. V. Ershov, G. A. Bogdanova, and V. G. Granik, Khim. Geterotsikl. Soedin., No. 2, 215 (1990).Google Scholar
  5. 5.
    V. G. Granik, I. V. Persianova, A. M. Zhidkova, N. B. Marchenko, R. G. Glushkov, and Yu. N. Sheinker, Khim. Geterotsikl. Soedin., No. 12, 1666 (1978).Google Scholar
  6. 6.
    V. G. Granik, I. V. Persianova, E. O. Sochneva, O. S. Anisimova, and Yu. N. Sheinker, Khim. Geterotsikl. Soedin., No. 9, 1255 (1979).Google Scholar
  7. 7.
    S.-F. Mason, J. Chem. Soc., No. 3, 1253 (1959).Google Scholar
  8. 8.
    M. Hansen and H. J. Jakobsen, J. Magn. Reson. 10, 84 (1973).Google Scholar
  9. 9.
    S. R. Johns and R. I. Willing, Aust. J. Chem. 29, 1617 (1976).Google Scholar
  10. 10.
    C. A. Kingsbury, M. D. Cliffton, S. Rajan, D. L. Duhram, and J. H. Looker, Heterocycles 16, 343 (1981).Google Scholar
  11. 11.
    A. C. Boicelli, R. Danieli, A. Mangini, L. Lunazzi, and G. Placucci, J. Chem. Soc., Perkin Trans. 2, No. 7, 1024 (1973).Google Scholar
  12. 12.
    W. Paudler and R. M. Sheets, Adv. Heterocycl. Chem. 33, 147 (1983).Google Scholar
  13. 13.
    R. J. Pugmire and D. M. Grant, J. Am. Chem. Soc. 90, 697 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • L. T. Guss
    • 1
  • L. S. Khabarova
    • 1
  • L. V. Ershov
    • 1
  • G. G. Dvoryantseva
    • 1
  • N. N. Proshina
    • 1
  • V. G. Granik
    • 1
  1. 1.S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical ChemistryMoscow

Personalised recommendations