Biochemical Genetics

, Volume 4, Issue 1, pp 135–155 | Cite as

Acatalasemia in the mouse and other species

  • Robert N. Feinstein
Proceedings of the symposium genetic control of mammalian metabolism held at The Jockson Laboratory, Bar Harbor, Maine


Genetic control of the level of blood catalase activity was first demonstrated in 1927. At present, such control has been demonstrated or suggested for nine different species, including man, the most studied. The development of an acatalasemic strain of mice has permitted a wide variety of experimental approaches, including most of those used in humans. Among those approaches which cannot readily be applied to man but have been used in acatalasemic mice are investigations of sensitivity to radiation lethality, mechanism of awareness to radiation, possible use as a model for replacement therapy for inborn errors of metabolism, and catalase in tissues other than erythrocytes. These are described, together with genetic, immunological, and other studies comparable to similar work on acatalasemic humans.


Catalase Replacement Therapy Experimental Approach Genetic Control Catalase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H., Heiniger, J. P., Bütler, R., and Hässig, A. (1961). Two cases of acatalasia in Switzerland. Experientia 17 466.Google Scholar
  2. Aebi, H., Heiniger, J. P., and Lauber, E. (1964). Methämoglobinbildung in Erythrocyten durch Peroxideinwirkung. Versuche zur Beurteilung der Schutzfunktion von Katalase und Glutathionperoxidase. Helv. Chim. Acta 47 1428.Google Scholar
  3. Aebi, H., Suter, H., and Feinstein, R. N. (1968). Activity and stability of catalase in blood and tissues of normal and acatalasemic mice. Biochem. Genet. 2 245.Google Scholar
  4. Allison, A. C., ap Rees, W., and Burn, G. P. (1957). Genetically controlled differences in catalase activity of dog erythrocytes. Nature 180 649.Google Scholar
  5. Baur, E. W. (1963). Catalase abnormality in a Caucasian family in the United States. Science 140 816.Google Scholar
  6. Campbell, D. H., and Fourt, L. (1939). Immunochemistry of catalase. J. Biol. Chem. 129 385.Google Scholar
  7. Cohen, G., and Hochstein, P. (1963). Glutathione peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry 2 1420.Google Scholar
  8. Dickerman, R. C., Feinstein, R. N., and Grahn, D. (1968). Position of the acatalasemia gene in linkage group V of the mouse. J. Heredity 59 177.Google Scholar
  9. Feinstein, R. N. (1949). Perborate as substrate in a new assay of catalase. J. Biol. Chem. 180 1197.Google Scholar
  10. Feinstein, R. N., Berliner, S., and Green, F. O. (1958). Mechanism of inhibition of catalase by 3-amino-1,2,4-triazole. Arch. Biochem. Biophys. 76 32.Google Scholar
  11. Feinstein, R. N., Howard, J. B., Ballonoff, L. B., and Seaholm, J. E. (1964a). A rapid blood catalase screening technique adjustable to any level of activity. Anal. Biochem. 8 277.Google Scholar
  12. Feinstein, R. N., Seaholm, J. E., Howard, J. B., and Russell, W. L. (1964b). Acatalasemic mice. Proc. Natl. Acad. Sci. 52 661.Google Scholar
  13. Feinstein, R. N., Howard, J. B., Braun, J. T., and Seaholm, J. E. (1966a). Acatalasemic and hypocatalasemic mouse mutants. Genetics 53 923.Google Scholar
  14. Feinstein, R. N., Braun, J. T., and Howard, J. B. (1966b). Reversal of H2O2 toxicity in the acatalasemic mouse by catalase administration. Suggested model for possible replacement therapy of inborn errors of metabolism. J. Lab. Clin. Med. 68 952.Google Scholar
  15. Feinstein, R. N., Braun, J. T., and Howard, J. B. (1967a). Acatalasemic and hypocatalasemic mouse mutants. II. Mutational variations in blood and solid tissue catalases. Arch. Biochem. Biophys. 120 165.Google Scholar
  16. Feinstein, R. N., Sacher, G. A., Howard, J. B., and Braun, J. T. (1967b). Comparative heat stability of blood catalase. Arch. Biochem. Biophys. 122 338.Google Scholar
  17. Feinstein, R. N., Suter, H., and Jaroslow, B. N. (1968a). Blood catalase polymorphism: Some immunological aspects. Science 159 638.Google Scholar
  18. Feinstein, R. N., Braun, J. T., and Howard, J. B. (1968b). Nature of the heterozygote blood catalase in a hypocatalasemic mouse mutant. Biochem. Genet. 1 277.Google Scholar
  19. Feinstein, R. N., Faulhaber, J. T., and Howard, J. B. (1968c). Acatalasemia and hypocatalasemia in the dog and the duck. Proc. Soc. Exptl. Biol. Med. 127 1051.Google Scholar
  20. Feinstein, R. N., Faulhaber, J. T., and Howard, J. B. (1968d). Sensitivity of acatalasemic mice to acute and chronic irradiation and related conditions. Radiation Res. 35 341.Google Scholar
  21. Holman, R. A. (1956). Production of abnormal bacteria. Some possible analogies with formation of tumours. Lancet 271 515.Google Scholar
  22. Kol'tsov, N. K. (1927). The catalase content in the blood of vertebrates as a genetic trait. Zh. Eksperim. Biol. Med. 5 303.Google Scholar
  23. Kultjugin, A. (1926). Über die Abnahme der Katalasewirkung des Blutes beim Aufbewahren. Biochem. Z. 167 241.Google Scholar
  24. Micheli, A., Peetoom, F., Rose, N., Ruddy, S., and Grabar, P. (1960). Immunochemical study of hemolyzates of human red blood cells. III. Identification of erythrocyte catalase. Ann. Inst. Pasteur 98 694.Google Scholar
  25. Morris, D. D., and Feinstein, R. N. (1969). Mechanism of mouse awareness of X-radiation. Nature 222 688.Google Scholar
  26. Putilin, K. I. (1929). Quoted in Allison et al. (1957).Google Scholar
  27. Radev, T. (1960). Inheritance of hypocatalasemia in guinea pigs. J. Genet. 57 169.Google Scholar
  28. Richardson, M., Huddleson, I. F., Bethea, R., and Trustdorf, M. (1953). Study of catalase in erythrocytes and bacteria. II. Catalase activity of erythrocytes from different species of normal animals and from normal humans. Arch. Biochem. Biophys. 42 124.Google Scholar
  29. Scandalios, J. G. (1965). Subunit dissociation and recombination of catalase isozymes. Proc. Natl. Acad. Sci. 53 1035.Google Scholar
  30. Shaw, C. R. (1964). The use of genetic variation in the analysis of isozyme structure. Brookhaven Symp. Biol. 17 117.Google Scholar
  31. Szeinberg, A., de Vries, A., Pinkhas, J., Djaldetti, M., and Ezra, R. (1963). A dual hereditary red blood cell defect in one family; hypocatalasemia and glucose-6-phosphate dehydrogenase deficiency. Acta Geneticae Medicae et Gemellologiae 12 247.Google Scholar
  32. Takahara, S. (1952). Progressive oral gangrene probably due to lack of catalase in the blood (acatalasemia). Lancet 263 1101.Google Scholar
  33. Tanford, C., and Lovrien, R. (1962). Dissociation of catalase into subunits. J. Am. Chem. Soc. 84 1892.Google Scholar
  34. Tria, E. (1939). Anticatalase. J. Biol. Chem. 129 377.Google Scholar
  35. von Wartburg, J. P., Papenberg, J., and Aebi, H. (1965). An atypical human alcohol dehydrogenase. Can. J. Biochem. 43 889.Google Scholar
  36. Warburg, O., Gawehn, K., and Geissler, A. W. (1957). Über die Wirkung von Wasserstoffperoxyd auf Krebszellen und auf embryonale Zellen. Z. Naturforsch. 12b 393.Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • Robert N. Feinstein
    • 1
  1. 1.Division of Biological and Medical ResearchArgonne National LaboratoryArgonne

Personalised recommendations