Skip to main content
Log in

Fluorimetric analysis

1. Untersuchung von Fluorescenzindicatoren zur Messung von pH-Werten im Neutralbereich

Fluorimetrische Analyse

1. A study on fluorescent indicators for measuring near neutral (“Physiological”) pH-values

  • Original Papers
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Zusammenfassung

Nach einer kurzen Besprechung der gewünschten Eigenschaften von Fluorescenzindicatoren werden die Anregungs- und Emissionsmaxima sowie die pKs-Werte von 28 potentiellen Indicatoren genau untersucht. Zusätzlich werden in qualitativer Weise andere Daten (Fluorescenzquantenausbeute, Löslichkeit und Stabilität) angegeben.

Die Indicatoren werden in die Gruppen A und B unterteilt. Solche der Gruppe A besitzen ihr langwelligstes Absorptionsmaximum und die stärkste Fluorescenz in acider Lösung. Jene der Gruppe B absorbieren am langwelligsten und fluorescieren am intensivsten in basischer Lösung. Von den untersuchten Indicatoren werden einige Cumarine und das HPTS (1-Hydroxypyren-3,6,8-trisulfonsäure-trinatriumsalz) als sehr geeignet befunden. Vom HPTS werden die Absorptions- und Fluorescenzspektren, die Abklingzeiten, die pKs-Werte sowie die Fluorescenzeigenheiten als Funktion des pH-Wertes angegeben. Wegen seiner Stabilität, Wasserlöslichkeit, langwelligen Emission und großen Stokes-Verschiebung erscheint HPTS als der pH-Indicator der Wahl.

Summary

The desired properties of fluorescence pH-indicators are shortly summarised. Fluorescence maxima and pKa values of 28 potential indicators are presented in detail, whilst other data (fluorescence quantum yields, solubility and stability) are given qualitatively.

Indicators are divided into groups A and B. Group A compounds exhibit their most long-wave absorption and most intense fluorescence in acidic solution. Group B indicators exhibit their most long-wave absorption and most intense fluorescence in basic solution.

Amongst the indicators investigated, some coumarins and HPTS(1-hydroxy-pyrene-3,6,8-trisulfonate) are considered to be the most suitable ones for both acid-base titrations and precise pH-measurements. The HPTS absorption, excitation and fluorescence spectra, decay times, pKa-values, and fluorescence properties as a function of pH and excitation wavelength are given. As a result of its stability, water solubility, long-wave excitation maximum and large Stokes' shift HPTS appears to be the pH-indicator of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Danckwortt PW, Eisenbrand J (1964) Lumineszenzanalyse im filtrierten ultraviolettem Licht. Akad. Verlagsges. Geest und Portig, Leipzig

    Google Scholar 

  2. Guilbault GG (ed) (1973) Practical fluorescence-theory, methods and techniques. Marcel Dekker, New York, p 598

    Google Scholar 

  3. Weast RC (ed) (1974) Handbook of chemistry and physics, 55. ed. CRC Press, Cleveland (Ohio), p D117

    Google Scholar 

  4. Udenfriend S (1962) Fluorescence assay in biology and medicine. Academic Press, New York, p 470

    Google Scholar 

  5. Dement J (1953) J Chem Educat 30:145

    Google Scholar 

  6. Krüger F (1976) Ber Dtsch Chem Ges 9:1572

    Google Scholar 

  7. Desha LI, Sheril R, Harrison L (1926) Ann Chem Soc 48:1493

    Google Scholar 

  8. Déribéré M (1936) Ann Chim Anal 18:173

    Google Scholar 

  9. Robl R (1926) Ber Dtsch Chem Ges 59:1725

    Google Scholar 

  10. Bülow C, Dick W (1928) Fresenius Z Anal Chem 75:81

    Google Scholar 

  11. Linser H (1932) Biochem Z 224:157

    Google Scholar 

  12. Jensen KA (1939) Fresenius Z Anal Chem 117:50

    Google Scholar 

  13. Kocsis EA, Pettko E (1942) Fresenius Z Anal Chem 124:45

    Google Scholar 

  14. Lübbers DW, Opitz N (1975) Z Naturforsch 30c:532

    Google Scholar 

  15. Opitz N, Lübbers DW (1975) Pflügers Arch 355:SR 120 Suppl.

    Google Scholar 

  16. Grünhagen HH, Witt HT (1970) Z Naturforsch 25b:373

    Google Scholar 

  17. Siegrist AE, Ackermann F (1959) German Pat. 1.059.440 (26.11.1959), to CIBA-Geigy AG (Basel)

  18. Fleck HR, Holmes RFG, Ward AW (1935) Analyst 60:32; therein described for the 8-hydroxyquinoline magnesium complex

    Google Scholar 

  19. Wolfbeis OS (1981) Z Physikal Chem 125:15

    Google Scholar 

  20. Tietze E, Baeyer O (1939) Liebigs Ann Chem 540:189

    Google Scholar 

  21. Förster Th (1950) Z Elektrochem 54:42 and 54:531

    Google Scholar 

  22. Weller A (1958) Z Physikal Chem (N.F.) 17:224

    Google Scholar 

  23. Nomura T, Escabi-Perez JR, Sunamoto J, Fendler JH (1980) J Am Chem Soc 102:1484

    Google Scholar 

  24. Kutchai H (1981) J Biochem Biophys Methods 4:321

    Google Scholar 

  25. Biegel CM, Gould JM (1981) Biophys J 33:102a

    Google Scholar 

  26. Clement NR, Gould JM (1980) Arch Biochem Biophys 202:650

    Google Scholar 

  27. Klein UM, Hauser M (1974) Z Physikal Chem (NF) 90:215

    Google Scholar 

  28. Lutty GA (1978) Toxicol Appl Pharmacol 44:225

    Google Scholar 

  29. Reference [22] gives a natural decay time of 5.7 ns.

    Google Scholar 

  30. Eisenbrand J (1929) Z Physikal Chem 144A:441

    Google Scholar 

  31. Wolfbeis OS, Fürlinger E, Wintersteiger R (1982) Monatsh Chem (Chem Monthly) 113:509

    Google Scholar 

  32. Wolfbeis OS, Fürlinger E (1982) Z Physikal Chem (NF) 128:171

    Google Scholar 

  33. Radley JA, Grant J (1959) Fluorescence analysis in ultraviolet light. Chapman & Hall, London

    Google Scholar 

  34. Chen RF (1968) Anal Lett 1:423

    Google Scholar 

  35. Wolfbeis OS (1976) Monatsh Chem 107:783

    Google Scholar 

  36. Dybing CD, Currier HB (1961) Plant Physiol 36:169

    Google Scholar 

  37. Kellogg TF (1970) J Lipid Res 11:498

    Google Scholar 

  38. Cassoly R, Gibson QH (1972) J Biol Chem 247:5686 and 247:7332

    Google Scholar 

  39. Kano K, Fendler JH (1979) Chem Phys Lipids 23:189

    Google Scholar 

  40. Zanker V, Peter W (1958) Chem Ber 91:572

    Google Scholar 

  41. Rozwadowski M (1961) Acta Physiol Polon 20:1005

    Google Scholar 

  42. Lindquist L (1960) Arkiv Kemi 16:79

    Google Scholar 

  43. Leonhardt H, Gordon L, Livingston R (1971) J Phys Chem 75:245

    Google Scholar 

  44. Schipfer R, Wolfbeis OS, Knierzinger A (1981) J Chem Soc (London) Perkin Trans II 1443

  45. Wolfbeis OS, Schipfer R (1981) Photochem Photobiol 34:567

    Google Scholar 

  46. Jensen K (1933) Fresenius Z Anal Chem 94:177

    Google Scholar 

  47. Holzbecher Z (1958) Chem Listy 52:423

    Google Scholar 

  48. Wolfbeis OS, Fürlinger E (1982) J Am Chem Soc 104:4069

    Google Scholar 

  49. Wolfbeis OS, Lippert E (1978) Z Naturforsch 33a:238

    Google Scholar 

  50. Wolfbeis OS, Knierzinger A (1979) Z Naturforsch 34a:510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfbeis, O.S., Fürlinger, E., Kroneis, H. et al. Fluorimetric analysis. Z. Anal. Chem. 314, 119–124 (1983). https://doi.org/10.1007/BF00482235

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00482235

Keywords

Navigation