Advertisement

Chemistry of Heterocyclic Compounds

, Volume 13, Issue 10, pp 1094–1098 | Cite as

Mass spectrometric study of methyl-substituted 4-azaphenanthrenes and their nitration products

  • V. P. Zvolinskii
  • P. I. Zakharov
  • S. G. Poshivalov
  • V. K. Shevtsov
  • V. G. Pleshakov
  • T. S. Seitembetov
  • N. S. Prostakov
Article
  • 27 Downloads

Abstract

The mass spectral behavior of five derivatives of the 4-azaphenanthrene series — 1,3-dimethyl-(I), 2,3-dimethyl-(II), 1,2,3,-trimethyl-(III), 1,2,3-trimethyl-8-nitro-(IV), and 1,3-dimethyl-6,7-dinitro-4-azaphenanthrene (V) — was studied. The stabilities of the molecular ions with respect to gragmentation (WM) are higher by a factor of two or more for the methyl-substituted I–III than for nitro derivatives IV and V. The intensity of the [M-H]+ ion peak in the mass spectra of I–V does not depend on the number of methyl groups but only on their positions: the presence of a CH3 group in the 2 position leads to an [M-H]+ ion that is 1.5 times more intense than when there is a methyl group in the 1 position. The molecular ions of I–V do not eliminate HCN molecules; this constitutes evidence for the absence of randomization of their methyl groups. The presence of a CH3 substituent in the 1 or 2 position does not affect the intensity of the [M-CH3]+ ion peaks, while the simultaneous presence of CH3 groups attached to the C1 and C2 atoms increases the intensity of the [M-CH3]+ fragment peak by a factor of two. In the mass spectra of nitro derivatives IV and V, [M-O]+, [M-OH]+, [M-NO]+, and [M-NO2]+ fragments are observed in the first step of the fragmentation of the M+ ion, whereas the [M-CO]+ ion peak characteristic for the dissociative ionization of 1-nitronaphthalene is also observed for 8-nitro-substituted IV.

Keywords

Methyl Mass Spectrum Organic Chemistry Nitration Simultaneous Presence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Budzikiewicz, C. Djerassi, and D. H. Williams, Mass Spectrometery of Organic Compounds, Holden Day, San Francisco-Cambridge (1967), p. 566.Google Scholar
  2. 2.
    A. A. Polyakova and R. A. Khmel'nitskii, Mass Spectrometry in Organic Chemistry [in Russian], Khimiya, Leningrad (1972), p. 207.Google Scholar
  3. 3.
    N. A. Klyuev, R. A. Khmel'nitskii, O. N. Chupakhin, G. A. Mal'tseva, V. L. Rusinov, and I. Ya. Postovskii, Khim. Geterotsikl. Soedin., No. 7, 983 (1975).Google Scholar
  4. 4.
    R. Engel, D. Halpern, and B. A. Funk, Organic Mass Spectrometry, 7, 177 (1973).Google Scholar
  5. 5.
    P. B. Teren'ev, R. A. Khmel'nitskii, I. S. Khromov, A. N. Kost, I. P. Gloriozov, and M. Islam, Zh. Org. Khim., No. 3, 606 (1970).Google Scholar
  6. 6.
    J. H. Beynon, R. A. Sauder, and A. E. Williams, Ind. Chem. Belg., No. 4, 311 (1964).Google Scholar
  7. 7.
    R. F. Couts, K. W. Hindmarsk, and E. Mak, Can. J. Chem., 48, 3747 (1970).Google Scholar
  8. 8.
    J. Harley-Masson, T. P. Fouble, and D. H. Williams, J. Chem. Soc., B, 396 (1966).Google Scholar
  9. 9.
    E. K. Fields and S. Meyerson, J. Org. Chem., 37, 3861 (1972).Google Scholar
  10. 10.
    G. E. Robinson, C. B. Thomas, and J. M. Vernon, J. Chem. Soc., B, 6, 1273 (1971).Google Scholar
  11. 11.
    A. Combes, Compt. Rend., 106, 1536 (1888); 105, 868 (1887).Google Scholar
  12. 12.
    N. S. Prostakov, V. G. Pleshakov, T. Kholdarova, V. V. Zvolinskii, and L. N. Plaksii, Khim. Geterotsikl. Soedin., No. 3, 378 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • V. P. Zvolinskii
    • 1
  • P. I. Zakharov
    • 1
  • S. G. Poshivalov
    • 1
  • V. K. Shevtsov
    • 1
  • V. G. Pleshakov
    • 1
  • T. S. Seitembetov
    • 1
  • N. S. Prostakov
    • 1
  1. 1.Patrice Lumumba International-Friendship UniversityMoscow

Personalised recommendations