Advertisement

Chemistry of Heterocyclic Compounds

, Volume 7, Issue 7, pp 875–881 | Cite as

PMR spectra and electronic structures of the neutral bases and cations of thiazolo [3,2-a] -benzimidazole and its methyl derivatives

  • G. G. Dvoryantseva
  • L. M. Alekseeva
  • T. N. Ul'yanova
  • Yu. N. Sheinker
  • P. M. Kochergin
  • A. N. Krasovskii
Article

Abstract

The PMR spectra of the neutral bases and cations of methyl derivatives of thiazolo[3,2-a]-benzimidazole were studied. The dependence of the chemical shifts on the acid concentration was examined. The investigated system is protonated and N-methylated at the N9 atom. The structure of the conjugated cation corresponds to considerable delocalization of the effective positive charge to the heteroatoms of the thiazole ring. A satisfactory linear correlation between the corrected chemical shifts and the π-electron densities, calculated by the simple MO LCAO method using a coulombic integral for the sulfur atom, hS=0.9, and the parameters of the Pullman system for the remaining heteroatoms, was observed.

Keywords

Chemical Shift Acid Concentration Linear Correlation Positive Charge Benzimidazole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. G. Dvoryantseva, T. N. Ul'yanova, G. P. Syrova, Yu. N. Sheinker, V. M. Aryuzina, T. P. Sycheva, and M. N. Shchukina, Teor. i Éksperim. Khim., 6, 23 (1970).Google Scholar
  2. 2.
    P. M. Kochergin and A. I. Krasovskii, Khim. Geterotsikl. Soedin., 945 (1966); 899 (1967); 321 (1969).Google Scholar
  3. 3.
    W. W. Paudler and H. L. Blewitt, J. Org. Chem., 31, 1295 (1966).Google Scholar
  4. 4.
    B. Pullman and A. Pullman, Quantum Biochemistry, Wiley (1963).Google Scholar
  5. 5.
    A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley (1961).Google Scholar
  6. 6.
    F. Joneda, T. Ohtaka, and J. Nitta, Chem. Pharm. Bull., 14, 698 (1966).Google Scholar
  7. 7.
    G. Fraenkel, R. E. Carter, N. McLachlan, and J. H. Richards, J. Am. Chem. Soc., 82, 5846 (1960).Google Scholar
  8. 8.
    A. H. Gawer and B. P. Dailey, J. Chem. Phys., 42, 2658 (1965).Google Scholar
  9. 9.
    P. J. Black, R. D. Brown, and M. L. Heffernan, Austral. J. Chem., 20, 1305, 1325 (1967).Google Scholar
  10. 10.
    B. P. Dailey, A. Gawer, and W. C. Neikam, Disc. Faraday Soc., 34, 18 (1962).Google Scholar
  11. 11.
    C. E. Johnson and F. A. Bovey, J. Chem. Phys., 29, 1012 (1958).Google Scholar
  12. 12.
    N. Jonathan, S. Gordon, and B. P. Dailey, J. Chem. Phys., 36, 2443 (1962).Google Scholar
  13. 13.
    G. G. Hall, A. Hardisson, and L. M. Jackman, Disc. Faraday Soc., 34, 15 (1962).Google Scholar
  14. 14.
    R. J. Abraham and W. H. Thomas, J. Chem. Soc. (B), 128 (1966).Google Scholar
  15. 15.
    S. F. Mason, J. Chem. Soc., 493 (1962).Google Scholar
  16. 16.
    J. A. Pople, J. Chem. Phys., 37, 53, 60 (1962).Google Scholar
  17. 17.
    V. M. S. Gil and J. N. Murrell, Trans. Faraday Soc., 60, 248 (1964).Google Scholar
  18. 18.
    A. D. Buckingham, Can. J. Chem., 38, 300 (1960).Google Scholar
  19. 19.
    J. I. Muscher, J. Chem. Phys., 37, 34 (1962).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1974

Authors and Affiliations

  • G. G. Dvoryantseva
    • 1
  • L. M. Alekseeva
    • 1
  • T. N. Ul'yanova
    • 1
  • Yu. N. Sheinker
    • 1
  • P. M. Kochergin
    • 1
  • A. N. Krasovskii
    • 1
  1. 1.Chemistry InstituteMoscow

Personalised recommendations