Advertisement

Chemistry of Heterocyclic Compounds

, Volume 8, Issue 10, pp 1181–1184 | Cite as

Polarographic study of the conduction of the polar effect of a substituent through the furan ring and side bridge groupings

  • Ya. P. Stradyn
  • I. Ya. Kravis
  • G. O. Reikhman
  • S. A. Giller
Article
  • 26 Downloads

Abstract

The coefficients of conduction of the polar effect of a substituent through the furan ring and side bridge groupings were calculated by comparison of the polarographic half-wave potentials for the electroreduction of the nitro group in series of 5-substituted derivatives of 2-nitrofuran and p-substituted nitrobenzene derivatives by means of the ρ -ρ method. The polarographic method can be successfully used for this purpose in media in which the electrochemical process is not limited by the kinetics of the side process of surface protonation of the nitro group. It follows from the polarographic data and hyperfine structure of the ESR spectra of the anion radicals that the furan ring conducts the polar effect of substituents better (by a factor of 1.1–1.2) than the benzene ring. Depending on the electronic structure of the bridge groups, the introduction of bridge groups between the furan ring and the substituent decreases the conduction of the effect of substituents.

Keywords

Benzene Ring Furan Anion Radical Nitrobenzene Nitro Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. H. Jaffé and H. L. Jones, Advances in Heterocyclic Chemistry, 3, 221 (1964).Google Scholar
  2. 2.
    R. A. Gavar and Ya. P. Stradyn', Khim. Geterotsikl. Soedin., 15 (1965).Google Scholar
  3. 3.
    V. A. Palm, Fundamentals of the Quantitative Theory of Organic Reactions [in Russian], Khimiya, Leningrad (1967), p. 96.Google Scholar
  4. 4.
    Ya. P. Stradyn', S. A. Giller, and Yu. K. Yur'ev, Dokl. Akad. Nauk SSSR, 129, 816 (1959).Google Scholar
  5. 5.
    Ya. P. Stradyn' (J. Stradins) and S. A. Giller (S. Hillers), Tetrahedron, 20, Suppl. 1 (Nitro Compounds), 409 (1964).Google Scholar
  6. 6.
    Ya. P. Stradyn' and G. O. Reikhman, Élektrokhimiya, 3, 178 (1967).Google Scholar
  7. 7.
    Ya. P. Stradyn' and I. Ya. Kravis, in: Electrochemical Processes with the Participation of Organic Substances [in Russian], Nauka, Moscow (1970), p. 110.Google Scholar
  8. 8.
    M. Kalinowski, Chem. Phys. Letters, 8, 378 (1971).Google Scholar
  9. 9.
    S. J. Miller, Symposium on Linear Free Energy Correlations. Preprints of Papers, Durham, North Carolina (1964), p. 45.Google Scholar
  10. 10.
    R. A. Gavar, Ya. P. Stradyn', and S. A. Giller, Dokl. Akad. Nauk SSSR, 157, 1424 (1964).Google Scholar
  11. 11.
    R. A. Gavar, Dissertation [in Russian], Riga (1967).Google Scholar
  12. 12.
    V. D. Bezuglyi, V. N. Dmitrieva, I. A. Shkodina, and L. A. Mel'nik, Zh. Obshch. Khim., 34, 376 (1964).Google Scholar
  13. 13.
    Yu. A. Zhdanov and V. I. Minkin, Correlation Analysis in Organic Chemistry [in Russian], Rostovon-Don (1966).Google Scholar
  14. 14.
    G. O. Reikhman and Ya. P. Stradyn', Izv. Akad. Nauk Latv. SSR, Ser. Khim., 23 (1967).Google Scholar
  15. 15.
    Ya. P. Stradyn', G. O. Reikhman, and G. Frimm, Khim. Geterotsikl. Soedin., 582 (1969).Google Scholar
  16. 16.
    R. A. Gavar, V. K. Grin', G. O. Reikhman, and Ya. P. Stradyn', Teor. i Éksperim. Khim., 6, 685 (1970).Google Scholar
  17. 17.
    S. G. Mairanovskii and F. S. Titov, Zh. Analiticheskoi Khim., 25, 121 (1965).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • Ya. P. Stradyn
    • 1
  • I. Ya. Kravis
    • 1
  • G. O. Reikhman
    • 1
  • S. A. Giller
    • 1
  1. 1.Institute of Organic SynthesisAcademy of Sciences of the Latvian SSRRiga

Personalised recommendations