Chemistry of Heterocyclic Compounds

, Volume 9, Issue 7, pp 873–877 | Cite as

Investigations in the field of 1-azabicyclanes

XI. The stereochemistry of the hydrogenation of 5- and 7-(β-hydroxyethyl)-1,2-dihydropyrrolizines on rhodium and nickel. Configurational assignment of the reaction products
  • I. M. Skvortsov
  • V. M. Levin


The stereochemistry of the catalytic hydrogenation of 5- and 7-(β-hydroxyethyl)-1,2-dihydropyrrolizines on 2.5% Rh/Al2O3 and Raney nickel under various conditions has been studied. On the basis of information on the configurational catalytic isomerization and the competing quaternization of the isomers, a consideration of the relative retention times, and an analysis of the geometries of the molecules of the 1- and 3-(β-hydroxyethyl)pyrrolizidines a configurational assignment of the stereoisomers has been made.


Hydrogenation Nickel Organic Chemistry Retention Time Catalytic Hydrogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. M. Skvortsov and I. V. Antipova, Khim. Geterotsikl. Soedin., 329 (1973).Google Scholar
  2. 2.
    A. A. Ponomarev, I. M. Skvortsov, and V. M. Levin, Khim. Geterotsikl. Soedin., 1399 (1970).Google Scholar
  3. 3.
    Organicum. Practical Handbook of Organic Chemistry, Pergamon Press, Oxford (1973).Google Scholar
  4. 4.
    R. J. Wicker, J. Chem. Soc., 2165 (1956).Google Scholar
  5. 5.
    I. M. Skvortsov and J. A. Elvidge, J. Chem. Soc., B, 1589 (1968).Google Scholar
  6. 6.
    K. Nakamoto, M. Margoshes, and R. E. Rundle, J. Amer. Chem. Soc., 77, 6480 (1955).Google Scholar
  7. 7.
    W. G. Schneider, J. Chem. Phys., 23, 26 (1955).Google Scholar
  8. 8.
    G. Pimentel and O. MacClellan, The Hydrogen Bond, W. H. Freeman, San Francisco (1960).Google Scholar
  9. 9.
    H. S. Aaron, G. E. Wicks, and C. P. Rader, J. Org. Chem., 29, 2248 (1964).Google Scholar
  10. 10.
    C. P. Rader, R. L. Young, and H. S. Aaron, J. Org. Chem., 30, 1536 (1965).Google Scholar
  11. 11.
    H. S. Aaron, C. P. Rader, and G. E. Wicks, J. Org. Chem., 31, 3502 (1966).Google Scholar
  12. 12.
    I. M. Skvortsov, I. V. Antipova, and A. A. Ponomarev, Dokl. Akad. Nauk SSSR, 178, 1106 (1968).Google Scholar
  13. 13.
    S. Nishimura, Shokubai Catalyst, 11, No. 5, 125 (1969).Google Scholar
  14. 14.
    A. A. Ponomarev, V. N. Dyukareva, and I. M. Skvortsov, Dokl. Akad. Nauk SSSR, 178, 893 (1968).Google Scholar
  15. 15.
    A. M. Likhosherstov, V. N. Kulakov, and N. K. Kochetkov, Zh. Obshch. Khim., 34, 2798 (1964).Google Scholar
  16. 16.
    M. D. Nair and R. Adams, J. Org. Chem., 26, 3059 (1961).Google Scholar
  17. 17.
    M. Tichy, Advan. Org. Chem., 5., 115 (1965).Google Scholar
  18. 18.
    I. M. Skvortsov, V. M. Levin, and I. Ya. Evtushenko, Khim. Geterotsikl. Soedin., 995 (1971).Google Scholar
  19. 19.
    I. A. Musaev, P. I. Sanin, V. P. Pakhomov, B. G. Berezkin, N. N. Barinova, and D. K. Zhestkov, Neftekhimiya, 6, 131 (1966).Google Scholar
  20. 20.
    H. Burchfield and E. Storrs, Biochemical Applications of Gas Chromatography, Academic Press (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • I. M. Skvortsov
    • 1
  • V. M. Levin
    • 1
  1. 1.N. G. Chernyshevskii Saratov State UniversityUSSR

Personalised recommendations